рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Проблема искусственного интеллекта

На данной стадии возникает необходимость прояснить взаимоотношения, существующие между искусственной жизнью и биологической наукой о мышлении. Объяснение живых систем, предлагаемое в рамках искусственной жизни обычно формулируется в рамках теоретического словаря, поддерживающего набор различных научных концепций (таких как самоорганизация, автономия, реакция на внешние проявления и т.п.). Если бы подобные концепции обеспечивались биологической наукой о мышлении с ее теоретическим словарем, тогда искусственная жизнь смогла бы стать таким же интеллектуальным базисом для науки о мышлении, каким ортодоксальный искусственный интеллект является для ортодоксальной науки о мышлении.


2. ВСЕ ЕЩЕ КАРТЕЗИАНСКАЯ


Будет очень полезно на некоторое время сконцентрироваться на одном специфическом спорном вопросе, по которому расходятся ортодоксальная и биологическая наука о мышлении, а именно выражение соотношения которое существует между нейробиологическими/биохимическими свойствами живых организмов с одной стороны и мышлением с другой стороны. (В результате данный спорный вопрос создает первое направление биологической нейтральности в ортодоксальной науке о мышлении, как было определено в предыдущей главе). Различие в этом вопросе может быть объяснено тем фактом, что два вида науки о мышлении сформированы в радикально различающихся философских концепциях. В целом биологическая наука о мышлении наиболее органично ложится в рамки общей аристотелевой концепции, в то же время у ортодоксальной науки о мышлении наблюдаются картезианские корни.

            Любой, кто даже не проявлял особого интереса к философии разума, знает, что Декарт считал мыслимое и физическое двумя различными, но взаимодействующими онтологическими реальностями. Однако другой вклад, сделанный Декартом в изучение разума, менее широко известен. Этим вторым вкладом является форма психологического обоснования – дуализм обоснования – который одновременно поддерживает следующие тезисы: (1) для объяснения физического явления, некто нуждается в привлечении только специфических физических сущностей и состояний и специфических физических законов; (2) для объяснения психологических явлений, некто нуждается в привлечении только специфических мыслительных сущностей и состояний и специфических законов мышления. Дуализм обоснования прекрасно согласуется с идеей, что мыслительные события являются предельной формой физических явлений. Для физической онтологии, предлагаем ли мы физический или психологический стиль обоснования зависит описания, к которому, с текущими заданными конкретными целями обоснования, склоняются взятые интересующие нас явления.

Важно то, что Декарт мыслил органическое тело мыслителя как еще один физический объект в физическом мире. Учитывая дуализм обоснования, данная идея приводила его к тому, что нейробиологическое/биохимическое обоснование событий в теле мыслителя неуместно в психологическом обосновании событий в разуме мыслителя, в том смысле, что психологическое обоснование может быть проведено в отсутствии любого, сколько бы то ни было детализированного нейробиологического/биохимического знания о теле мыслящего объекта. Данное обосновательное отделение разума от физического носителя приводил в результате к прерывистости в обосновании в данном контексте между жизнью и разумом. Научное обоснование процессов, которые рассматривались картезианством как органические, относящиеся к телесной жизни (такие процессы как пищеварение, размножение и рост) немедленно попадало в область биологических объяснений, которая толковалась как принижаемая физической наукой. Научное обоснование физических процессов, с другой стороны, нуждается в изложении на языке, совершенно отличающемся от биологического языка, в языке специфическом для психологии. Это равнозначно отклонению положений строгой непрерывности. Другими словами, дуализм обоснования несовместим с биологической наукой о мышлении.

В настоящее время функционалисты в философии разума придерживаются взглядов, что определяющее свойство типа ментального состояния является причинная роль того, что состояние играет в посредничестве между (1) сенсорными входами, (2) другими типами ментальных состояний и (3) моторикой поведения. Строго говоря, функционализм не проводит связей к природе основы, на которой реализованы ментальные состояния, так как сущность в некотором частном ментальном состоянии уже является, как уже говорилось, сущностью в некотором специфическом функциональном состоянии, и совершенно эквивалентные функциональные состояния могут быть, в принципе, реализованы биохимически на углеродной основе, в виде кремниевого мозга или в виде картезианского разума самого по себе. Здесь, в принципе, функционализм входит составной частью в дуализм субстанций. Данный принципиальный факт может показаться незначительным, если считать, что функционализм обычно является рабочей лошадкой теории распознавания, согласно которой любая сущность данного типа ментального состояния является единственной и сходна с некоторым физическим состоянием в физической системе. Но, «дополнение к требованиям распознавания не рассматривает нейробиологические и биохимические детали тела биологического мыслящего объекта относящегося к процессу психологического обоснования»1. Согласно функционалистам, процесс психологического обоснования может проводиться в превосходной изоляции от этих частных деталей. Подобная позиция уже рассматривалась ранее: функционализм является формой картезианского дуализма обоснования.

            Так как же база дуализма обоснования в функционализме уместна в понимании ортодоксальной науке о мышлении? Ответом является, что ортодоксальная наука о мышлении построена на функционализме. В самом деле, вычислительные состояния (тип состояний к которым прибегают ортодоксальный искусственный интеллект и ортодоксальная наука о мышлении) прекрасные примеры функционально определенных состояний. При этом нет никакого противоречия в том, что одно из классических положений функционализма было выражено в теории путем использования машины Тьюринга. Как только принимается функционалисткие основы ортодоксальной науки о мышлении и вместе с ней общее картезианское рассмотрение отношений между живым телом и разумом которые порождаются данными основами, можно увидеть почему ортодоксальная наука о мышлении связана с идеей, что может быть описано без понимания или существенных ссылок на нейробиологический или биохимический базис данного процесса мышления. Другими словами, можно видеть почему ортодоксальная наука о мышлении принимает положения совершенно неприемлемые биологической наукой о мышлении.



3. СЛЕДОМ ЗА КАРТЕЗИАНСТВОМ


            Теперь самое время затронуть биологическую науку о мышлении, чтобы увидеть, что может быть принято в рассмотрение из области пост-картезианства. Исследования в области коннективистских (или искусственных нейронных) сетей являются подходящей для этого областью, так как подобные исследования относятся как к ортодоксальному искусственному интеллекту так и к искусственной жизни.

3.1. ИСТОРИЯ РАЗВИТИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

 

Раньше с понятием искусственного интеллекта (ИИ) связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. И хотя фантастические литературные прообразы  "умных машин" создавались еще за сотни лет до наших дней, лишь с середины тридцатых годов,   с момента публикации работ А. Тьюринга, в которых осуждалась реальность создания  таких устройств, к проблеме ИИ стали  относиться

серьезно. Для того, чтобы ответить на вопрос, какую машину считать "думающей", Тьюринг предложил использовать следующий тест: испытатель через посредника

 общается с невидимым для него собеседником  человеком или машиной. «Интеллектуальной» может считаться та машина, которую испытатель в процессе такого общения не сможет отличить от человека. 

Если испытатель при проверке компьютера на "интеллектуальность" будет придерживаться достаточно жестких ограничений в выборе темы и формы диалога, этот тест выдержит любой современный компьютер, оснащенный подходящим программным обеспечением. Можно было бы считать признаком интеллектуальности умение поддерживать беседу, но, как было показано, эта человеческая способность легко моделируется на компьютере. Признаком интеллектуальности может служить способность к обучению. В 1961 г. профессор Д. Мичи, один из ведущих английских специалистов по ИИ, описал механизм, состоящий из 300 спичечных коробков, который мог научиться играть в крестики и нолики. Мичи назвал это устройство MENACE (Matchbox Educable Naughts and Crosses Engine). В названии (угроза) заключается, очевидно, доля иронии, вызванной предубеждениями перед  думающими машинами.

До настоящего времени единого и признанного всеми определения ИИ не существует, и это не удивительно. «Достаточно вспомнить, что универсального определения человеческого интеллекта также нет дискуссии о том, что можно считать признаком ИИ, а что  нет, напоминают споры средневековых ученых о том, которых интересовало, сколько ангелов смогут разместиться на кончике иглы»1. Сейчас к ИИ принято относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как кто делал бы размышляющий над их решением человек.

 

3.2 ОСНОВНЫЕ ЗАДАЧИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

 

Ранее было уже указано, что нельзя дать исчерпывающее определение ИИ. Однако можно перечислить те задачи, методы, решения которых на ЭВМ принято связывать с понятием ИИ. Ниже приводятся краткие характеристики таких задач.

Автоматическое решение задач представляет собой не столько вычислительную

процедуру  поиска ответа, как, например, расчет квадратного корня, сколько нахождение метода решения поставленной задачи. Системы, осуществляющие построение вычислительной процедуры, называют автоматическими решателями задач. Под распознавателями подразумевают устройства, реагирующие на внешнюю среду через различные датчики, например видеокамеры, и позволяющие решать задачи распознавания образов. В таких устройствах результаты распознавания выводятся на экран, используются для принятия решений, и т.п. Например, на современных автоматических боулинговых дорожках установлены видеокамеры, которые после броска шара распознают число и взаимное расположение оставшихся кегель, для подсчета очков. Системы распознавания речи позволяют упростить взаимодействие с компьютером, с помощью упрощенного естественного языка.

Необходимо заметить, что существующие на данный момент системы могут распознавать лишь очень ограниченный набор слов-команд, требуют предварительной настройки на дикцию пользователя и не могут анализировать длинную речь (целые предложения), хотя и ведутся интенсивные исследования в этом направлении.

Задачи доказательства теорем и обучения (например, для овладения навыками в какой-либо игре) решаются с помощью автоматического совершенствования алгоритма посредством обработки пробных вариантов, т.е. как бы с помощью накопления собственного опыта. Следует отметить, что способность к обучению представляет собой одно из основных свойств ИИ.

В настоящее время многие отождествляют понятие ИИ и экспертных систем. Это отождествление появилось во многом благодаря разработкам по созданию программного и аппаратного обеспечения в рамках японского проекта по созданию ЭВМ пятого поколения. Существующие экспертные системы включают в себя огромные базы знаний, сформированные с помощью информации, получаемой от экспертов, т.е. специалистов в той области, для которой создавалась каждая система.

Манипуляция накопленными данными осуществляется в другой части экспертных систем, содержащей правила вывода. Сейчас такие системы с успехом используются в медицине, геологии, проектировании и многих других отраслях.

Для эффективной работы мощных систем ИИ необходима высокая скорость доступа к большим базам данных, а также высокое быстродействие. ЭВМ с обычной архитектурой не удовлетворяют этим требованиям.    Обычные последовательные

методы решения задач уступают место методам параллельной обработки, когда несколько процессоров независимо друг от друга выполняют различные части одной программы, или выполняют одинаковые действия над различными частями большого массива данных. Для этого применяются средства от многопроцессорных компьютеров, многомашинных кластеров, до специализированных параллельных процессоров и транспьютеров. Однако в последние годы наблюдается тенденция к использованию массово производящихся, и как следствие дешевых, процессоров для объединения в большие вычислительные комплексы.

В системах искусственного интеллекта человеческие знания, необходимые для решения задач ИИ, должны быть представлены и записаны в форме, пригодной для последующей обработки на компьютере. Сложность заключается в том, что многие аспекты знаний изменяются в зависимости от условий и с трудом поддаются описанию, оставаясь при этом очевидными для человека. Знания должны храниться в системах ИИ в некоторой обобщенной для данной предметной  области форме,

позволяющей использовать выбранное представление в любой возможной ситуации. Для хранения знаний требуется большая область памяти, и, кроме того, значительное время уходит на их предварительную обработку. Это очевидное условие может быть упущено при разработке системы.

Многие аспекты ИИ связаны с развивающейся в настоящее время наукой  робототехникой. «Идея создания «разумного» робота, способного учиться на собственном опыте, представляет собой одну из центральных проблем ИИ. Такой робот может обладать способностью к ведению диалога на естественном языке

и уметь решать задачи, требующие инициативы и некоторой оригинальности мышления»1. Для этого требуется некоторое предварительное обучение робота, в результате которого он мог бы в отличие от используемых сейчас промышленных

роботов выполнять целенаправленные и заранее незапрограммированные действия.

В течение многих лет идеи ИИ серьезно не рассматривались. Это происходило отчасти благодаря чрезмерному оптимизму некоторых теоретиков, а также из-за появления ряда сенсационных публикаций по этому предмету, впоследствии оказавшихся во многом несостоятельными.

Идея аппаратно-программных моделей человеческого мозга вызывала насмешки, а в сфере технического производства стали избегать разработок, связанных с ИИ, так как результаты их внедрения явно не соответствовали обещаниям. Эта в полном смысле слова плачевная ситуация в настоящее время изменилась к лучшему благодаря новейшим достижениям в разработке аппаратуры и программного обеспечения.


3.3 НЕЙРОСЕТИ

 

Идея нейронных сетей родилась в ходе исследований в области искусственного интеллекта, а именно в результате попыток воспроизвести способность нервных биологических систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60-80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления (в частности, на его   представ-

лении как манипуляций с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не охватывают некоторые ключевые аспекты работы человеческого мозга. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.