рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Свойства симметрии и закона сохранения

            Но какой выход из проблемной ситуации нашел Бор? Опираясь на гипотезу Планка о квантах, Бор фактически восстановил права принципа симметрии, так как его постулат — это, по существу, закон сохранения энергии и момента импульса. Эйнштейн объяснил фотоэффект, используя квантовую гипотезу. Его уравнение фактически представляет собой закон сохранения энергии. Планк также с помощью гипотезы о квантах преодолел проблемную ситуацию — “ультрафиолетовую катастрофу”. Но тут естественным образом возникают вопросы: каково отношение самой квантовой гипотезы к принципу симметрии? не указывает ли постоянная Планка на сохранение? как относятся принцип неопределенности и принцип дополнительности к принципу симметрии? может ли проблемная ситуация в квантовой теории — боровской концепции дополнительности — быть освещена с позиций принципа симметрии?

            Известно, что симметрия, обнаруженная в математическом аппарате, стала источником проблемной ситуации и одновременно методом преодоления ее. В этом отношении примечательна специальная теория относительности. Инвариантность уравнений Максвелла относительно преобразований Лоренца породила проблемную ситуацию, из которой Эйнштейн нашел выход, пересмотрев представления о пространстве и времени и обосновав новую симметрию. При этом специальная теория относительности создала новую проблемную ситуацию, но предсказанные ею релятивистские эффекты (зависимость массы от скорости и др.) способствовали утверждению и признанию данной теории.

            Показателен и пример роли симметрии в физике элементарных частиц. Речь идет о предсказании омега-гиперона на основе SU-симметрии. Теоретические успехи физики элементарных частиц были бы немыслимы без открытия сохранения барионного заряда, лептонного заряда, изотонического спина, странности и др., которым соответствует определенная симметрия. Идея симметрии подсказала кварковую модель. Это породило новую проблемную ситуацию, выход из которой также связан с использованием принципа симметрии.

            Приведенные примеры, демонстрирующие роль принципа симметрии в разрешении проблемных ситуаций, позволяют утверждать, что как только фиксируется фундаментальное нарушение симметрии, например Р-симметрии или СР-симметрии, так сразу же возникает острая проблемная ситуация, выход из которой связан с установлением новой, более высокой симметрии. И как только эта симметрия выявлена, так сразу же физика получает новый стимул для своего развития. Иными словами, закон сохранения симметрии определяет пути развития физики. И наоборот, априоризация определенного вида симметрии, ее абсолютизация тормозят решение проблемной ситуации, а тем самым и развитие физической теории. История физики дает много примеров такой абсолютизации и ее последствий: это абсолютизация аристотелевской симметрии пространства и времени, ньютоновской симметрии пространства и времени, различные попытки ревизии теории относительности, желание приписать отдельным видам симметрии универсальность и т.д.

            Две тенденции: движение симметрии к ее высшим конкретным формам и стремление к ограничению такого движения, проявляющееся в абсолютизации определенного вида симметрии,— находятся в постоянном конфликте. В.П. Визгин пишет по этому поводу: “Симметрия — оружие обоюдоострое: с одной стороны, симметрия и ее нарушения есть источник проблемной ситуации и метод их преодоления, а с другой — всякая симметрия, взятая отдельно и возведенная в ранг универсальной и абсолютно достоверной истины, есть существенная преграда на пути развития физики. Эти две особенности симметрии нередко так переплетаются между собой, что одни физики видят в нарушении симметрии крах теоретической системы и пытаются любой ценой законсервировать принципы инвариантности, которые кажутся им нерушимыми. Другие физики в это же время видят в таком нарушении стимул развития теории, плодотворный и преобразующий. Именно такое развитие проблемной ситуации, связанное с симметрией, часто сопровождалось жаркими спорами и истинным драматизмом (борьба Галилея против схоластики Аристотеля, коллизия Галилей — Кеплер, борьба Лейбница и Гюйгенса против концепции абсолютного пространства и времени, неевклидова геометрия, дискуссии вокруг СТО и ОТО, история открытия несохранения четности и т. д.)”.

            Итак, принцип симметрии, превращенный в метод, определяет пути движения физической теории к истине, способствует успешному преодолению проблемных ситуаций. Кроме того как единство противоположностей принцип симметрии управляет и процессом саморазвития — борьбой двух противоположных тенденций, установлением новых форм симметрии и сохранением их. Отсюда становится очевидным, что существует самая тесная связь между симметрией и сохранением.


























ЗАКОН СОХРАНЕНИЯ.


В философском энциклопедическом словаре читаем "Закон - внутренняя существенная и устойчивая связь явлений, обусловливающая их упорядоченное изменение. На основе знания закона возможно достоверное предвидение течения процесса. Понятие закона близко  к понятию закономерности, которая представляет собой совокупность взаимосвязанных по содержанию законов, обеспечивающих устойчивую тенденцию или направленность в изменениях системы. Вместе с тем закон выражает одну из сторон сущности, познание которой в теории совпадает с переходом от эмпирических фактов к формулировке законов изучаемых процессов".

Понятие закона сформулировалось в результате длительного развития науки и философской мысли. Из каких же источников почерпнуто это понятие? Одним из таких источников является социально-историческая практика человечества. В древнем обществе, в условиях первобытного родового строя закон выступает прежде всего как неописанное, но тем не менее обязательное правило, которому должно подчиняться поведение людей.

При этом формирование понятия закона связано с двумя формами общественного сознания, характерными для первобытного общества - мифологией и религией.

Одним из центральных элементов античной мифологии было представление о господствующей в мире всеобщей необходимости, судьбе. Судьба случаев как некая абстрактная сила, объективная необходимость. Так зарождается одно из важнейших понятий античного мировоззрения - понятие необходимости, которое в последующем явилось предпосылкой идеи закономерности в природе.

В неразрывной связи с мифологией в первобытном обществе возникает также и религия, с помощью которой люди пытаются осмыслить свое собственное существование.

Как и мифология, религия представляет собой фантастическое отражение в человеческом сознании земного, материального мира, в котором господствующие над человеком в его повседневной жизни внешние силы принимают форму неземных, сверхъестественных. В религиозном мировоззрении понятие закона получило искаженное толкование. Закон с религиозной точки зрения - это предписание божества, т.е. нечто навязанное миру сверхъестественной силой. Именно на основе религиозного сознания возникло представление, что бог-де создал все вещи, а затем подчинил их своей воле в форме законов природы, после чего их поведение стало определяться божественным соизволением. Религиозное понятие о законе нашло подробное выражение в так называемых священных книгах - Библии, Коране, Ведах и др.

Первые попытки сформировать представление о закономерном характере мировых процессов, свободном от религиозных и мифологических подходов, были предприняты философами древнего мира. Наряду с общественно-политической практикой, из которой была заимствована идея закона, важный источником понятия закона природы для мыслителей того времени являлся сам объективный материальный мир, окружающая человека природа. Представление о гармоничности Вселенной, о повторяемости, инвариантности протекающих в ней процессов было почерпнуто ими из непосредственного наблюдения за явлениями действительности. Это нашло свое выражение в ряде умозрительных философских систем, созданных древними мыслителями, в особенности в системах античных философов - Гераклита, Демокрита, Эпикура, Платона, Аристотеля и многих других. Естественно, однако, что эта попытка была еще весьма несовершенной. Ведь естествознание в то время только зарождалось и представляло собой ряд несистематизированных отрывочных сведений о природе.

Только в Новое Время понятие  закона природы начинает все более глубоко  разрабатываться философами и учеными. Это стало возможным благодаря тому, что развитие математики, астрономии, механики продвинулось достаточно далеко,  в результате чего было открыто много  немаловажных законов материального мира.

Но надо заметить, что законы природы для мыслителей этого времени: а именно XVII и XVIII в. Сводились к законам механики, законам механического движения, которые она рассматривали как всеобщие универсальные законы природы. Понятия научного закона в то время еще не было. Законы природы рассматривались как вечные, постоянные и неизменные.

Значительный шаг в дальнейшей разработке  понятия закона был сделан классиками немецкой философии конца XVIII - начала XIX вв. И. Кантом и Г. Гегелем. В это время естественные науки из описательных начинают превращаться  в науки об отношениях, связях между элементами структуры, о законах функционирования и развития объектов. В научный обиход проникает идея развития природы, а Гегель придает истолкованию понятию закона диалектический характер.

Здесь можно еще долго говорить о понятии закона: рассмотреть типы законов, принципы создания, методы конструирования; охарактеризовать их (законов) простоту и изящество, сказать о различных моделях законов. Остановлюсь лишь кратко на понятии гипотезы и ее роли в познании законов, ведь ее выдвижение, апробация - это один из важнейших методов открытия законов.

Гипотеза - это догадка, предположение. И когда ищут какую-то новую, пока еще неизвестную но, возможно, существующую закономерность, высказывается определенное предположение. Это предположение может оказаться верным или же - полностью или частично - неверным, ложным. Единственным судьей, который выносить этот "вердикт", является опыт, практика.

"Вообще говоря, - пишет Р. Фейнман в книге "Характер физических законов", - поиск нового закона ведется следующим образом. Прежде всего о нем догадываются. Затем вычисляют следствия этой догадки и выясняют, что повлечет за собой это закон, если окажется, что он справедлив. Затем результаты расчетов сравниваются с тем, что наблюдается в природе, с результатами  экспериментов или с нашим опытом и выясняют, так это или не так. Если расчеты расходятся с экспериментальными данными, то гипотеза неправильна. В этом простом утверждении - самое зерно науки..."

Действительно, гипотеза, интуитивное научное предположение, является неизменным спутником ученого в его творческой работе. Она представляет собой способ открытия  нового, метод развития науки. Научные законы и теории открываются и формулируются в результате  интеллектуальной деятельности, существенным компонентом которой является  выдвижение  гипотез. Без гипотезы не может быть творчества, а без творчества нет подлинной науки.

Например, именно переработка множества гипотез феномена явления b-распада, о котором будет говорить ниже, и позволила установить существование новой частицы - нейтрино. Как и на каких основаниях совершалось данное открытие - этому и посвящена следующая глава.

Но для начала обратимся к физическому энциклопедическому словарю. Вот что там говорится о законах сохранения.

Законы сохранения - физические, закономерности, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в классе процессов.


Идея сохранения, т.е. идея о том, что существуют неизменные сущности, настолько же стара, насколько древни вообще все источники науки, и она всегда служила “внутренним основанием” систематизации знаний о природе. Исключительна роль идеи сохранения в истории культуры, что показано в работе Н.Ф. Овчинникова. Автор отмечает, что именно эта фундаментальная мысль — мысль о неизменных сущностях — характеризует процесс превращения знания в науку. В развитии и конкретизации научной идеи сохранения она принимала разные формы и приводила к открытию “истинных законов мира”. “Эпоха зарождения науки,— пишет Н.Ф. Овчинников,— совпадает с эпохой возникновения идеи сохранения, в какой степени эта идея принимала конкретные формы, знание, опирающееся на нее, становилось научным знанием... Эта идея представляет собой необходимую предпосылку научного мышления вообще. В развитии и совершенствовании идеи сохранения видится решающее условие развития и совершенствования системы научного знания”.

            Еще в классической физике идея сохранения превратилась в принцип. Были сформулированы соответствующие конкретные законы — законы сохранения энергии, массы, импульса, момента импульса, электрического заряда. Исключительно важную роль играет открытие Ю. Майером закона сохранения энергии. М. Фарадей назвал этот закон высшим физическим законом, а Р. Фейнман утверждал, что “из всех законов сохранения этот закон самый трудный и абстрактный, но и самый полезный”. По мнению Фейнмана, во многих физических законах содержится в зашифрованном виде закон сохранения энергии. История физики показывает, что нет никаких оснований сомневаться в истинности этого закона, и если что-либо, как кажется, противоречит ему, то “обычно оказывается, что не закон ошибочен, а просто мы недостаточно знаем явление”.

            Общий закон сохранения, конкретизируемый в виде различных частных физических законов сохранения, лежит в основе единой физической картины мира. В этом смысле “поиски законов физики — это вроде детской игры в кубики, из которых нужно собрать целую картинку. У нас огромное множество кубиков, и с каждым днем их становится все больше. Многие валяются в стороне и как будто бы не подходят к остальным. Откуда мы знаем, что все они из одного набора? Откуда мы знаем, что вместе они должны составить цельную картинку? Полной уверенности нет, и это нас несколько беспокоит. Но то, что у многих кубиков есть нечто общее, вселяет надежду. На всех нарисовано голубое небо, все сделаны из дерева одного сорта. Все физические законы подчинены одним и тем же законам сохранения”.

            С развитием физического знания увеличивается число конкретных законов сохранения различных физических величин. Так, в физике микромира открыты законы сохранения барионного заряда, лептонного заряда, четности, странности. В структуре физических теорий появляются новые формы выражения сохранения — инвариантность. К таким формам относится, в частности, принцип унитарности в квантовой теории, который, по мнению Н.Ф. Овчинникова, представляет собой современную формулировку принципа сохранения материи. Особое место занимает так называемый принцип инвариантности научных законов, имеющий ярко выраженную методологическую окраску. Теория относительности требует соблюдения инвариантности физических законов относительно определенных преобразований. Согласно Е. Вигнеру, инвариантные принципы играют роль законов законов. Их функция состоит в том, чтобы наделять структурой законы природы или устанавливать между ними внутреннюю связь, “так же как законы природы устанавливают структуру или взаимосвязь в мире явлений”.

            Таким образом, с развитием физической науки принцип сохранения обогащает свое содержание. Как методологический принцип он отражает тенденцию, стремление познания к раскрытию неизменных элементов. В каждом конкретном случае данный принцип требует искать соответствующую конкретную неизменяющуюся величину — некоторую физическую константу, или инвариантное отношение. Учитывая все это, Н.Ф. Овчинников предложил свою классификацию законов сохранения, которые он называет принципами сохранения. По степени общности они могут быть разделены на общие и частные. К первому классу относятся принципы, которые соответствуют известным сегодня классам физических взаимодействий: принципы сохранения движения (энергии, импульса, момента импульса), электрического заряда, унитарности и т.п. Ко второму классу можно отнести принципы с ограниченным действием, допускающие нарушения в определенных ситуациях: принципы сохранения изоспина, четности, странности и др.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.