рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыEcology

POPULATION GROWTH

Human population growth is at the root of virtually all of the world's environmental problems. Although the growth rate of the world's population has slowed slightly since the 1990s, the world's population increases by about 77 million human beings each year. As the number of people increases, crowding generates pollution, destroys more habitats, and uses up additional natural resources.

The Population Division of the United Nations (UN) predicts that the world's population will increase from 6.23 billion people in 2000 to 9.3 billion people in 2050. The UN estimates that the population will stabilize at more than 11 billion in 2200. Other experts predict that numbers will continue to rise into the foreseeable future, to as many as 19 billion people by the year 2200.

Although rates of population increase are now much slower in the developed world than in the developing world, it would be a mistake to assume that population growth is primarily a problem of developing countries.

In fact, because larger amounts of resources per person are used in developed nations, each individual from the developed world has a much greater environmental impact than does a person from a developing country. Conservation strategies that would not significantly alter lifestyles but that would greatly lessen environmental impact are essential in the developed world.

In the developing world, meanwhile, the most important factors necessary to lower population growth rates are democracy and social justice. Studies show that population growth rates have fallen in developing areas where several social conditions exist. In these areas, literacy rates have increased and women receive economic status equal to that of men, enabling women to hold jobs and own property. In addition, birth control information in these areas is more widely available, and women are free to make their own reproductive decisions.

GLOBAL WARMING

Like the glass panes in a greenhouse, certain gases in the Earth's atmosphere permit the Sun's radiation to heat Earth. At the same time, these gases retard the escape into space of the infrared energy radiated back out by Earth. This process is referred to as the greenhouse effect. These gases, primarily carbon dioxide, methane, nitrous oxide, and water vapor, insulate Earth's surface, helping to maintain warm temperatures. Without these gases, Earth would be a frozen planet with an average temperature of about -18 °C (about 0 °F) instead of a comfortable 15 °C (59 °F). If the concentration of these gases rises, they trap more heat within the atmosphere, causing worldwide temperatures to rise.

Within the last century, the amount of carbon dioxide in the atmosphere has increased dramatically, largely because people burn vast amounts of fossil fuels - coal and petroleum and its derivatives. Average global temperature also has increased - by about 0.6 Celsius degrees (1 Fahrenheit degree) within the past century. Atmospheric scientists have found that at least half of that temperature increase can be attributed to human activity. They predict that unless dramatic action is taken, global temperature will continue to rise by 1.4 to 5.8 Celsius degrees (2.5 to 10.4 Fahrenheit degrees) over the next century. Although such an increase may not seem like a great difference, during the last ice age the global temperature was only 2.2 Celsius degrees (4 Fahrenheit degrees) cooler than it is presently.

The consequences of such a modest increase in temperature may be devastating. Already scientists have detected a 40 percent reduction in the average thickness of Arctic ice. Other problems that may develop include a rise in sea levels that will completely inundate a number of low-lying island nations and flood many coastal cities, such as New York and Miami. Many plant and animal species will probably be driven into extinction, agriculture will be severely disrupted in many regions, and the frequency of severe hurricanes and droughts will likely increase.

DEPLETION OF THE OZONE LAYER

The ozone layer, a thin band in the stratosphere (layer of the upper atmosphere), serves to shield Earth from the Sun's harmful ultraviolet rays. In the 1970s, scientists discovered that chlorofluorocarbons (CFCs)-chemicals used in refrigeration, air-conditioning systems, cleaning solvents, and aerosol sprays-destroy the ozone layer. CFCs release chlorine into the atmosphere; chlorine, in turn, breaks down ozone molecules. Because chlorine is not affected by its interaction with ozone, each chlorine molecule has the ability to destroy a large amount of ozone for an extended period of time.

The consequences of continued depletion of the ozone layer would be dramatic. Increased ultraviolet radiation would lead to a growing number of skin cancers and cataracts and also reduce the ability of immune systems to respond to infection. Additionally, growth of the world's oceanic plankton, the base of most marine food chains, would decline. Plankton contains photosynthetic organisms that break down carbon dioxide. If plankton populations decline, it may lead to increased carbon dioxide levels in the atmosphere and thus to global warming. Recent studies suggest that global warming, in turn, may increase the amount of ozone destroyed. Even if the manufacture of CFCs is immediately banned, the chlorine already released into the atmosphere will continue to destroy the ozone layer for many decades.

In 1987, an international pact called the Montreal Protocol on Substances that Deplete the Ozone Layer set specific targets for all nations to achieve in order to reduce emissions of chemicals responsible for the destruction of the ozone layer. Many people had hoped that this treaty would cause ozone loss to peak and begin to decline by the year 2000. In fact, in the fall of 2000, the hole in the ozone layer over Antarctica was the largest ever recorded. The hole the following year was slightly smaller, leading some to believe that the depletion of ozone had stabilized. Even if the most stringent prohibitions against CFCs are implemented, however, scientists expect that it will take at least 50 more years for the hole over Antarctica to close completely.

HABITAT DESTRUCTION AND SPECIES EXTINCTION

Plant and animal species are dying out at an unprecedented rate. Estimates range that from 4,000 to as many as 50,000 species per year become extinct. The leading cause of extinction is habitat destruction, particularly of the world's richest ecosystems-tropical rain forests and coral reefs. If the world's rain forests continue to be cut down at the current rate, they may completely disappear by the year 2030. In addition, if the world's population continues to grow at its present rate and puts even more pressure on these habitats, they might well be destroyed sooner.

AIR POLLUTION

A significant portion of industry and transportation burns fossil fuels, such as gasoline. When these fuels burn, chemicals and particulate matter are released into the atmosphere. Although a vast number of substances contribute to air pollution, the most common air pollutants contain carbon, sulfur, and nitrogen. These chemicals interact with one another and with ultraviolet radiation in sunlight in dangerous ways. Smog, usually found in urban areas with large numbers of automobiles, forms when nitrogen oxides react with hydrocarbons in the air to produce aldehydes and ketones. Smog can cause serious health problems.

Acid rain forms when sulfur dioxide and nitrous oxide transform into sulfuric acid and nitric acid in the atmosphere and come back to Earth in precipitation. Acid rain has made numerous lakes so acidic that they no longer support fish populations. Acid rain is also responsible for the decline of many forest ecosystems worldwide, including Germany's Black Forest and forests throughout the eastern United States.

WATER POLLUTION

Estimates suggest that nearly 1.5 billion people worldwide lack safe drinking water and that at least 5 million deaths per year can be attributed to waterborne diseases. Water pollution may come from point sources or nonpoint sources. Point sources discharge pollutants from specific locations, such as factories, sewage treatment plants, and oil tankers. The technology exists to monitor and regulate point sources of pollution, although in some areas this occurs only sporadically. Pollution from nonpoint sources occurs when rainfall or snowmelt moves over and through the ground. As the runoff moves, it picks up and carries away pollutants, such as pesticides and fertilizers, depositing the pollutants into lakes, rivers, wetlands, coastal waters, and even underground sources of drinking water. Pollution arising from nonpoint sources accounts for a majority of the contaminants in streams and lakes.

With almost 80 percent of the planet covered by oceans, people have long acted as if those bodies of water could serve as a limitless dumping ground for wastes. However, raw sewage, garbage, and oil spills have begun to overwhelm the diluting capabilities of the oceans, and most coastal waters are now polluted, threatening marine wildlife. Beaches around the world close regularly, often because the surrounding waters contain high levels of bacteria from sewage disposal.

HOW ECOSYSTEMS WORK. ECOSYSTEM MANAGEMENT

Ecosystem comprises organisms living in a particular environment, such as a forest or a coral reef, and the physical parts of the environment that affect them. The term ecosystem was coined in 1935 by the British ecologist Sir Arthur George Tansley, who described natural systems in "constant interchange" among their living and nonliving parts.

The ecosystem concept fits into an ordered view of nature that was developed by scientists to simplify the study of the relationships between organisms and their physical environment, a field known as ecology. At the top of the hierarchy is the planet's entire living environment, known as the biosphere. Within this biosphere are several large categories of living communities known as biomes that are usually characterized by their dominant vegetation, such as grasslands, tropical forests, or deserts. The biomes are in turn made up of ecosystems.

The living, or biotic, parts of an ecosystem, such as the plants, animals, and bacteria found in soil, are known as a community. The physical surroundings, or abiotic components, such as the minerals found in the soil, are known as the environment or habitat.

Any given place may have several different ecosystems that vary in size and complexity. A tropical island, for example, may have a rain forest ecosystem that covers hundreds of square miles, a mangrove swamp ecosystem along the coast, and an underwater coral reef ecosystem. No matter how the size or complexity of an ecosystem is characterized, all ecosystems exhibit a constant exchange of matter and energy between the biotic and abiotic community. Ecosystem components are so interconnected that a change in any one component of an ecosystem will cause subsequent changes throughout the system.

The living portion of an ecosystem is best described in terms of feeding levels known as trophic levels.

Green plants make up the first trophic level and are known as primary producers. Plants are able to convert energy from the sun into food in a process known as photosynthesis. In the second trophic level, the primary consumers - known as herbivores - are animals and insects that obtain their energy solely by eating the green plants. The third trophic level is composed of the secondary consumers, flesh-eating or carnivorous animals that feed on herbivores. At the fourth level are the tertiary consumers, carnivores that feed on other carnivores. Finally, the fifth trophic level consists of the decomposers, organisms such as fungi and bacteria that break down dead or dying matter into nutrients that can be used again.

Some or all of these trophic levels combine to form what is known as a food web, the ecosystem's mechanism for circulating and recycling energy and materials. For example, in an aquatic ecosystem algae and other aquatic plants use sunlight to produce energy in the form of carbohydrates. Primary consumers such as insects and small fish may feed on some of this plant matter, and are in turn eaten by secondary consumers, such as salmon. A brown bear may play the role of the tertiary consumer by catching and eating salmon. Bacteria and fungi may then feed upon and decompose the salmon carcass left behind by the bear, enabling the valuable nonliving components of the ecosystem, such as chemical nutrients, to leach back into the soil and water, where they can be absorbed by the roots of plants. In this way, nutrients and the energy that green plants derive from sunlight are efficiently transferred and recycled throughout the ecosystem.

In addition to the exchange of energy, ecosystems are characterized by several other cycles. Elements such as carbon and nitrogen travel throughout the biotic and abiotic components of an ecosystem in processes known as nutrient cycles. For example, nitrogen traveling in the air may be snatched by tree-dwelling, or epiphytic, lichen that converts it to a form useful to plants. When rain drips through the lichen and falls to the ground, or the lichen itself falls to the forest floor, the nitrogen from the raindrops or the lichen is leached into the soil to be used by plants and trees. Another process important to ecosystems is the water cycle, the movement of water from ocean to atmosphere, to land and eventually back to the ocean. An ecosystem such as a forest or wetland plays a significant role in this cycle by storing, releasing, or filtering the water as it passes through the system.

Every ecosystem is also characterized by a disturbance cycle, a regular cycle of events such as fires, storms, floods, and landslides that keeps the ecosystem in a constant state of change and adaptation. Some species even depend on the disturbance cycle for survival or reproduction. For example, longleaf pine forests depend on frequent low-intensity fires for reproduction. The cones of the trees, which contain the reproductive structures, are sealed shut with a resin that melts away to release the seeds only under high heat.

ECOSYSTEM MANAGEMENT

Humans benefit from these smooth-functioning ecosystems in many ways. Healthy forests, streams, and wetlands contribute to clean air and clean water by trapping fast-moving air and water, enabling impurities to settle out or be converted to harmless compounds by plants or soil. The diversity of organisms, or biodiversity, in an ecosystem provides essential foods, medicines, and other materials. But as human populations increase and their encroachment on natural habitats expand, humans are having detrimental effects on the very ecosystems on which they depend. The survival of natural ecosystems around the world is threatened by many human activities: bulldozing wetlands and clear-cutting forests - the systematic cutting of all trees in a specific area - to make room for new housing and agricultural land; damming rivers to harness the energy for electricity and water for irrigation; and polluting the air, soil, and water.

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.