рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыАкустоэлектрические преобразователи. Принципы работы. Особенности конструкции и использования

Весьма существенным является диапазон электромагнитных волн, в который происходит преобразование за счет акустоэлектрических элементов звукового сигнала. Как правило, это связано с практическим предназначением элемента и его расположением в схеме устройства. Если акустопреобразовательный элемент расположен, например, в схеме гетеродина или высокочастотного генератора, изменение его параметров под действием звукового сигнала может привести к изменению амплитуды, частоты или фазы гетеродина или генератора.

В этом случае канал утечки информации является радиоканалом, не ограниченным проводными системами, защита которого имеет свои особенности.

По проявлению в эфире акустопреобразовательные каналы можно разделить на:

передаваемые по линиям связи, питания, управления;

передаваемые радиосигналом.

К первым относятся возможные каналы утечки акустической информации, создаваемые акустопреобразовательными элементами телефонной сети, сети вторичной часофикации, громкоговорящей или диспетчерской связи, некоторые извещатели в охранной сигнализации и т.п.

Акустический и виброакустический каналы утечки информации

Технический канал утечки акустической информации представляет собой совокупность источника акустической информации, среды распространения (воздух, вода, земля, строительные и другие конструкции) и технических средств разведки.

Источники акустических колебаний разделяют на:

первичные - механические колебательные системы, например, органы речи человека, музыкальные инструменты, струны, звуки работающей техники;

вторичные - электроакустические преобразователи - устройства для преобразования акустических колебаний в электрические и обратно (пьезоэлементы, микрофоны, телефоны, громкоговорители и др.) и технические устройства в которых эти преобразователи используются.

В акустических каналах утечки информации техническим демаскирующим (разведывательным) признаком объектов защиты является акустические (звуковые) волны.

Такие каналы утечки информации характерны для акустической речевой разведки (для перехвата речевой информации из мест коммуникативной деятельности человека) и акустической сигнальной разведки (для получения разведданных об акустических "портретах" различных технических устройств, работе которых сопутствуют акустические поля).

Применительно к каналам утечки речевой информации в качестве среды распространения рассматривается воздушная (атмосферная или газовая) и твердые среды.

Следует отметить, что средством перехвата акустической информации, данным природой, является человеческое ухо, возможности которого можно существенно улучшить за счет использования различных технических средств и решений.

В качестве средств речевой разведки выступают различного типа преобразователи (датчики) регистрации механических колебаний в соответствующих средах, объединенные с различными видами регистраторов речи, либо приемники электрических сигналов и электромагнитных полей (при преобразованных в эти поля акустических сигналов).

Для образования условий утечки акустической информации необходимо выполнение определенных энергетических соотношений и временных услоиий:

(Pиас/Pш) >= (Pa/Pш) пред - для речевых сигналов при требуемых соотношениях в октавных полосах

Где: Pиас - мощность информационного (опасного) акустического сигнала в месте приема,

Рш - мощность шумов в месте приема,

(Ра/Рш) пред - минимальное соотношение мощности акустического сигнала к мощности шумов в точке приема, при котором сигнал еще может быть перехвачен соответствующим TCP (с учетом различных методов выделения информативного сигнала - накопления, корреляции и т.п.). Определение величины Риас требует учета всех особенностей распространения акустических волн, а также условий, обеспечивающих разборчивость принимаемого сигнала.

Вторым условием существования канала утечки акустической информации является совпадение по времени работы технического средства акустической разведки ?tпер со временем осуществления конфиденциальных переговоров (?Tинф) или передачи конфиденциальной речевой информации.

С учетом физических особенностей акустической волны как волны механической, количество типов каналов утечки информации может быть весьма разнообразным.

Применительно к акустическому сигналу могут быть рассмотрены такие каналы утечки информации как (рис.4):

а)

Акустический источник конфиденциальной информации ТСР приема конфиденциальной информации

Акустический источник конфиденциальной информации ТСР приема конфиденциальной информации

Рис.4. Возможные типы каналов утечки конфиденциальной акустической информации: а) канал утечки акустической информации воздушной полной (акустический); б) канал утечки акустической информации структурной волной (виброакустический); в) канал утечки акустической информации с использованием облучающих сигналов (оптико-электронный); г) канал утечки акустической информации за счет акустоэлектрических преобразователей (электроакустический); д) канал утечки акустической информации с закладными устройствами.

Утечка информативного акустического сигнала может осуществляться за счет воздушной акустической волны (рис.4а). Среда - "воздух (или воздух - твердое тело - воздух)". В этом случае в качестве технического средства перехвата может служить человеческое ухо, микрофон, направленный микрофон.

Перехват информации, преобразованной из воздушной в вибрационную (структурную), может быть осуществлен непосредственно с несуших конструкций (стены, трубы, окна и т.д.); среда - "воздух - твердая среда". TCP - контактный вибродатчик (стетоскоп, акселерометр) (рис.4б);

С учетом особенностей воздействия звуковой волны как механической, возможен и такой вид канала утечки информации, который показан на рис.4в. В этом случае злоумышленник "подсвечивает" тонкую перегородку (окно, лампочку и т.п. } сигналом лазера или высокочастотного генератора. Отраженный сигнал, в этом случае, будет промодулирован механическими колебаниями тонкой перегородки, полностью воспроизводящими акустический информационный сигнал, воздействующий на эту же тонкую перегородку.

При организации защиты акустической (речевой) информации необходимо учитывать возможность её утечки из систем звукоусиления, магнитной звукозаписи, при передаче по каналам связи, систем звукового сопровождения кинофильмов и т.п. Утечка акустической информации может произойти из-за воздействия акустического сигнала на элементы тракта радиоэлектронных систем - конденсаторы, катушки индуктивности, элементы телефонного аппарата, вторичных часов и т.п. В этом случае преобразованный в электрический информационный акустический сигнал может распространяться на большие расстояния (рис.4г). Среда - "воздух - электроакустический преобразователь - воздух (или токопроводящие цепи)". TCP - приемник электрических сигналов или электромагнитных волн (электроакустический канал).

И, наконец, информативный акустический сигнал может быть перехвачен закладным (радиозакладным) устройством и передан злоумышленнику по проводному или радиоканалу (рис.4д). Среда - "воздух или токопроводящие цепи". TCP - приемник электрических сигналов или электромагнитных волн.

Каждый из возможных каналов утечки информации индивидуален по физическим основам его создания, и для его разрушения, т.е. для защиты источника от утечки информации, требуется нарушение энергетических и временных условий существования канала утечки путем использования различных по физическим принципам средств защиты.

Технические характеристики акустопреобразовательного канала

Акустоэлектрический преобразователь-устройство, преобразующее электромагнитную энергию в энергию упругих волн в среде и обратно. В зависимости от направления преобразования различают электроакустические преобразователи излучателе и приемники.

Акустоэлектрический преобразователь-приемник характеризуется чувствительностью в режиме холостого хода Y=U'/P и внутренним сопротивлением Zэл. По виду частотной зависимости U'/Р различают широкополосные и резонансные приемники акустического излучения.

Электроакустический преобразователь-излучатель характеризуется:

чувствительностью, равной отношению Р на определенном расстоянии от излучателя на оси характеристики направленности к U или I;

внутренним сопротивлением, представляющим собой нагрузку для источника электрической энергии;

акустоэлектрическим КПД

за/Эл= Pак/Pэл

где Рак - активная излучаемая акустическая мощность;

Рэл - активная электрическая потребляемая мощность.

Конструкции акустоэлектрических преобразователей существенно зависят от их назначения и применения и поэтому весьма многообразны.

К акустоэлектрическим преобразователям может быть отнесен весьма широкий круг окружающих нас приборов, элементов различных электрических сетей, линий связи и управления и т.п.

Степень возможной опасности создания акустоэлектрического канала утечки информации зависит от коэффициента преобразования акустоэлектрического преобразователя - чем он выше, тем больше мощность (напряжение) преобразованного в электрический опасного сигнала при одинаковой мощности акустического сигнала:

Pисэл=Pиса* за/Эл

Существенным в этом соотношении является то, что в состав коэффициента преобразования входит величина механического сопротивления соответствующего акустоэлектрического преобразователя, связанная с величиной трения перемещающихся под воздействием акустического поля элементов. Величина чувствительности акустоэлектрических преобразователей определяется в милливольтах опасного электрического сигнала к звуковому давлению опасного акустического сигнала в Па, т.е. мВ/Па.

На практике часто сравнивают чувствительность акустоэлектрических преобразователей с чувствительностью специально созданных акустоэлектрических преобразователей, таких, как микрофоны. Например, у конденсаторного электретного микрофона МКЭ-3 чувствительность по свободному акустическому полю на частоте 10 кГц не более 3 мВ/Па, у электродинамических миниатюрных микрофонов ММ-5 средняя чувствительность в диапазоне частот 0,5 - 5,0 кГц на сопротивление нагрузки не менее 0.6 мВ/Па (для низкоомных - 600 Ом) и 1,2 мВ/Па (для высокоомных - 1200 Ом).

Сравнение акустопреобразовательных элементов показывает, что некоторые из них по "чувствительности" близки к специально созданным для преобразования звуковой энергии в электрическую (микрофонов). Так, например," чувствительность "некоторых звонковых цепей телефонных аппаратов достигает 0,15-0,4 мВ/Па.

Учитывая такую "мощность" возможных источников утечки информации, специалисты уделяют серьезное внимание защите подобных каналов.

Возможные направления зашиты акустической информации от утечки через каналы, образуемые акустопреобразовательными элементами

Для подавления акустопреобразовательного канала утечки могут быть использованы организационно-технические и технические способы защиты.

рис.5.

Организационно-технические мероприятия нацелены на оперативное решение вопросов защиты конфиденциальной акустической информации наиболее простыми средствами и организационными мерами ограничительного характера, регламентирующими порядок пользования техническими средствами, находящимися в выделенных помещениях.

В частности, при проведении таких защитных мероприятий целесообразно определить те технические средства, которые могут послужить источником акустоэлектрического канала утечки информации. Ими могут быть:

телефонные аппараты (городской и внутренней связи);

системы проводной радиотрансляционной сети;

приемные и телевизионные системы;

системы звукозаписи;

внутренняя служебная связь, переговорные устройства типа "директор-секретарь";

системы охранной сигнализации;

системы звуковой сигнализации;

системы электрочасофикации

и т.п.

Проведение таких защитных мероприятий направлено также на исключение из защищаемого помещения всех технических средств, наличие которых не вызвано производственной необходимостью.

На этапе организационно-технических мероприятий по защите от акустопреобразовательных каналов утечки информации могут быть приняты меры ограничительного характера, регламентирующие порядок пользования техническими средствами, например, отключение акустопреобразовательных элементов от проводных систем или выключение систем, имеющих в своем составе такие элементы.

Например, отключение звонковых цепей телефонных аппаратов (всего телефонного аппарата), выключение радиоприемных и телевизионных устройств, систем проводной радиотрансляционной сети и т.п. на период проведения конфиденциальных мероприятий.

Определение контролируемой зоны на этом этапе позволяет выделить наиболее опасные с точки зрения утечки информации устройства и обратить на них особое внимание и первоочередную защиту техническими средствами защиты.

Организационно-технические мероприятия определяют возможную контролируемую зону на защищаемом объекте - зону, где гарантировано исключение пребывания лиц, не допущенных к охраняемой информации (не имеющих постоянного или разового пропуска на объект).

Применительно к акустоэлектрическому каналу утечки информации требуемая зона может быть значительной, так как необходимо учитывать возможность утечки преобразованной информации как по проводным каналам, так и по радиоканалу.

Установление такой контролируемой обширной зоны возможно только для предприятий с достаточно большой территорией и мощными службами безопасности.

Проведение подобных мероприятий направлено также на исключение из выделенного помещения всех технических средств, наличие которых не вызвано производственной необходимостью. Использование устройств защиты проводится на этапе технических мероприятий.

Технические мероприятия по инженерно-технической защите информации предусматривают блокирование каналов возможной утечки информации с помощью инженерных конструкций, уменьшающих величину опасного акустического сигнала, воздействующего на акустопреобразовательный элемент, либо уменьшение величины преобразованного в электромагнитный информативного сигнала.

Возможно также повышение уровня шумового сигнала, обеспечивающего условия подавления информативного либо акустического, либо преобразованного сигнала.

Как видно из анализа возможных механизмов создания акустопреобразовательных каналов утечки информации, защита от утечки по подобным каналам возможна:

а) понижением мощности информативного акустического канала (Риа), воздействующего на акустопреобразовательный элемент до уровня, когда преобразованный в электрический информативный сигнал не может быть перехвачен TCP, т. е использование способов и методов пассивной акустической защиты:

(Uисэл/Uш) >=(Uc/Uш) пред

б) понижением мощности (напряжения) преобразованного в электрический информативного сигнала (Pисэл) или повышением уровня шума (Pш) в линии до уровня, при котором соотношение этого сигнала по напряжению (мощности) к шумам в линии приема станет меньшим, чем необходимое соотношение для приема сигнала TCP (как в разделе "а");

в) уменьшением (в тех случаях, когда это возможно) коэффициента передачи акустоэлектрического преобразователя до величины, при которой преобразованный электрический сигнал не может быть перехвачен соответствующим TCP (т.е. также выполняется условие, как в разделе "а");

г) понижением мощности преобразованного в радиосигнал информативного акустического сигнала (например, экранированием) или подавление этого сигнала (зашумление).

Таким образом возможны направления защиты с использованием как пассивных, так и активных (и комбинированных) способов защиты акустической информации от утечки через цепи с акустопреобразовательными элементами (рис.5).

Например, установка наиболее опасных акустопреобразовательных элементов в кожухи позволяет уменьшить (легкие кожухи) или устранить (тяжелые кожухи) возможные каналы утечки информации через эти элементы.

Если такой способ исключается или ограничен условиями эксплуатации, возможно подавление преобразованного информативного электрического сигнала в цепях, в которые включен акустоэлектрический преобразователь, - цепях питания, управления, связи, в радиоэлектронной аппаратуре и т.п., т.е. мы осознанно идем (например, исходя из экономических, габаритных и других условий) на защиту не на "воздушном", а на "преобразованном" участке возможного канала утечки информации.

При этом возможны такие способы как пассивной (уменьшение преобразованного информативного сигнала Uисэл) защиты, так и активной защиты (увеличение Uш) или комбинированных способов защиты.

Эти способы выбираются, как правило, из особенностей конструкции и схемы акустопреобразовательного элемента, величин напряжений и токов в линиях, в которые включен акустопреобразовательный элемент, режима работы схем защиты.

Следует отметить, что в ряде случаев, когда информативный акустический сигнал преобразуется в радиосигнал, ограничиваются и возможные способы защиты.

Некоторые каналы утечки информации через акустопреобразовательные элементы могут быть устранены путем уменьшения коэффициента передачи этих элементов.

Это возможно для случаев, когда такое изменение не влияет на рабочие параметры элемента. Например, рыхлая обмотка индуктивности, катушки, трансформаторы витка которой могут перемещаться под действием акустических колебаний (и эти элементы в этом случае становятся акустопреобразовательными) после ее заливки соответствующим компаундом перестает быть акустоэлектрическим преобразователем.

К сожалению, таких возможностей устранения акустопреобразовательных элементов на практике немного, так как для большинства рассмотренных выше схем и устройств перемещение их элементов друг относительно друга необходимо для их нормального функционирования.

На практике для защиты информации различных устройств созданы эффективные средства защиты, учитывающие особенности функционирования этих устройств.

Заключение

Среди множества технических каналов утечки информации, утечка информации с помощью акустоэлектрических преобразователей занимает особое место. Уникальные по своей простоте, почти бытовые, они не воспринимаются всерьез многими службами безопасности. А между тем, именно эти каналы способны обеспечить очень эффективное прослушивание помещений. Поэтому акустические и вибрационные каналы, которые могут образоваться при проведении совещания, требуют тщательного изучения, с целью разработки эффективных мер по их блокированию.

Список литературы

1. Халяпин Д.Б., Ярочкин В.И. Основы защиты информации (учебное пособие). М.: ИПКИР, 1994 г.

2. Халяпин Д.Б., Ярочкин В.И. Основы защиты промышленной и коммерческой информации. Термины и определения. М: ИПКИР. 1994 г. Халяпин Д.Б. Как устроены "клопы". "Частный сыск. Охрана. Безопасность", №11, 1995г.

3. Халяпин Д.Б. Чем заткнуть "длинное ухо". М.: "Мир безопасности". № 3, 1998 г.

4. Халяпнн Д.Б. Акустоэлектрические, акустопреобразовательные каналы утечки информации и возможные способы их подавления. М.: "Мир безопасности", № 5

5. Халяпин Д.Б. Комплексная защита информации. Сборник статей. Отделение hoi ринологии Международной Академии информатизации, Выпуск 5. Часть 1. М.: Отделение погранологии МАИ, 1998 г.,

6. Халяпин Д.Б. Что необходимо защищать, когда защищаешь информацию. М.: "Мир безопасности", № 1, 1998 г., с.46-49.

7. Халяпин Д.Б. Физические основы возникновения вибрационного (структурного) канала утечки информации и возможности его подавления. М.: "Мир безопасности", № 2, 1999 г.

8. Халяпин Д.Б., Шерстнева Ю.А. а) Определение предельной величины опасного сигнала, наводимого ПЭВМ и ЛВС в сеть электропитания. Системы безопасности связи и телекоммуникаций, J* 2, 1999 г. б). Защита информации. обрабатываемой ПЭВМ и ЛВС. от утечки по сети электропитания. Системы безопасности связи и телекомуникапий, № 28. 1999 г.

Страницы: 1, 2




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.