рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыАвтоматизированная система защиты и контроля доступа в помещения

Ввод кода. После того как обнаружено прерывание, происходит переход к вводу идентификационного кода, который заключается в комбинациях минизадержек и опросов порта P3.2 (или P3.3). Задержка организуется запуском таймера (105 мксек), в течении которой опрашиваются входные порты. Инициатором запуска таймера выступает микроконтроллер, который выдает “стробирующие импульсы” на выход порта P3.5( или Р3.7) и переходит в режим ожидания ответа от идентификатора в течении задержки. Считывая код, микроконтроллер каждый бит заносит в резидентную память данных. Программа считывания кода с идентификатора приведена в приложении 3.

ИК1=1; ИК2=1. После того как код считан и занесен в РПД, программа переходит к следующему блоку. В данном случае блок индикации. Контроллер настраивает порты Р1.0 и Р1.1 на вывод логических нулей, для того чтобы “зажечь” красные светодиоды на обеих сторонах шлюза. Красные светодиоды сигнализируют пользователю, что код считан и система обрабатывает полученные данные, причем внешние прерывания от идентификаторов игнорируются. Затем программа переходит к блоку передачи кода в моноканал.

4) Вывод кода. Вывод кода в моноканал для передачи его на пульт управления происходит следующим образом. МК51 переходит в режим ожидания запроса от пульта управления. Имеется в виду следующее.

В регистре специальных функций SCON микроконтроллера имеется управляющий бит SM2, который в режиме 3 УАПП позволяет относительно простыми средствами реализовать обмен информацией в локальной сети между контроллерами и пультом управления (компьютером). Механизм обмена информацией через последовательный порт МК51 построен на том, что в режиме 3 программируемый девятый бит данных при приеме фиксируется в бите RB8. УАПП программируется таким образом, что при получении стоп-бита прерывание от приемника будет возможно только при условии RB8=1. Это выполняется установкой управляющего бита SM2 в регистре SCON. Компьютер в протокольном режиме “широковещательной” передачи (всем ведомым контроллерам) выдает в моноканал слово-адрес микроконтроллера, которое отличается от слов-данных только тем, что в его девятом бите содержится 1. Программа реализации протокола сетевого обмена информацией построена таким образом, что при получении слова-адреса, МК51 сверяет полученный адрес со своим адресом и в случае совпадения выдает в моноканал слово подтверждающее запрос адреса. Затем сбрасывает свой управляющий бит SM2 и готовится к подтверждению ответа от компьютера. После подтверждения микроконтроллер переходит к передаче кода-идентификатора в моноканал и заканчивает передачей кода “конец связи”. Передача ведется в режиме 3 УАПП.

Ожидание1. “Ожидание1” является подпрограммой обслуживающей обмен данными между компьютером и контроллером. Когда МК51 передает данные в моноканал он затем переходит в режим ожидания от компьютера. Это реализуется аппаратурной реализацией временного интервала на основе таймера задержки длительностью 2мсек.

В задачу ожидания также входит определение момента прихода ответа от компьютера. Для этого каждые два цикла микроконтроллера опрашивается регистор SCON.0( или бит RI). Бит RI устанавливается аппаратно в единичное состояние для фиксации приема байта в регистре SBUF. (Флаг прерывания приемника RI устанавливается аппаратурно в середине периода стоп-бита в режиме 3. Подпрограмма обслуживания прерывания должна сбрасывать бит RI). То есть если обнаружено, что в течении ожидания RI=1, значит пришел ответ от компьютера.

Ввод ответа. В течении ожидания приходит ответ от компьютера, который заносится в РПД. А в резидентной памяти программ (РПП) хранятся коды правильных и неправильных кодов-ответов (см. Таблицу5.1)

Таблица 5.1

адрес РПП

информационный код

назначение

0CH

00001111

пользователь идентифицирован

0DH

11110000

пользователь неидентифицирован

0EH

00011111

подлиность подтверждена

0FH

11100000

подлиность неподтверждена

Сверяя полученные ответы с хранящимися кодами, МК51 принимает соответствующее решение о переходе на ту или иную подпрограмму.

Опрос датчиков. Контроллер обрабатывает информацию снимаемую с датчиков. Эта задача реализуется обращением к порту P.0 и сравнении снятого кода с таблицей кодов положения дверей хранящихся в РПП (см. таблицу 5.2)

Таблица 5.2

положение дверей

закрыто

нейтрально

открыто

д1.1

1

0

1

д1.2

1

0

0

д1.3

1

0

0

д1.4

1

0

1

д2.1

1

0

1

д2.2

1

0

0

д2.3

1

0

0

д2.4

1

0

1

Таблица 5.3

адрес РПП

информационный код

назначение

05H

00001001

двери1 открыты

06H

00001111

двери1 закрыты

07H

10010000

двери2 открыты

08H

11110000

двери2 закрыты

В таблице 5.3 хранятся коды соответствующие возможным положениям дверей шлюза. В нейтральном положении на входе порта Р.0 присутствуют все нули (т. е. 00000000). В зависимости от считанного кода порта Р.0 принимается соответствующее решение о переходе на соответствующую подпрограмму.

Кроме того опрашивается порт Р.2 , который предназначен для считывания кода с АЦП, в котором содержится информация о физической массе. Если масса равна нулю и двери закрыты происходит переход на начало программы. В случае не выполнения этих условий запускается подпрограмма инициализации запуска тревоги, которая заключается в передаче соответствующего кода на пульт управления.

Микроконтроллер переходит в режим ожидания запроса адреса от компьютера (См. блок “Вывод кода”). Установив связь с компьютером МК сбрасывает в регистр SBUF байт соответствующей определенному виду тревоги. Т.е. если масса не равна нулю то в SBUF записывается 01011000 (что говорит о присутствии в шлюзе нарушителя), если двери открыты, то в SBUF записывается 00001001 или 10010000 (что говорит о саботаже работы дверей). Запись в SBUF означает автоматическую передачу кода в моноканал.

Звуковая сигнализация. После выдачи в моноканал кода-тревоги, МК инициирует подпрограмму включения звуковой сигнализации, которая предупреждает нарушителя о саботаже работы системы. Длительность звуковой сигнализации -- 5 секунд. После чего программа снова возвращается к опросу датчиков. Еще раз опросив датчики и если условие m=0, d=0 (т.е. масса =0, двери закрыты) программа возвращается в начало.

ИК1=0, ИЗ1=1. Если пользователь идентифицирован программа переходит к следующей операции: погасить красный светодиод на входе в шлюз (на выходе красный остается включенный), включить зеленый. Для этого на порт P.1.0. подается 1, на порт Р.1.2 подается 0. Если пользователь не идентифицирован происходит переход на подпрограмму запуска звуковой сигнализации, а затем в начало программы.

После того как пользователь идентифицировался запускается подпрограмма открывания сдвижных дверей (см. приложение 3) и переход в режим ожидания. Ожидание заключается в аппаратно-программной задержке на 10 секунд для того, чтобы дать пользователю время войти в шлюз. Если по истечении этого времени он не войдет, двери автоматически закрываются. В течении задержки программа постоянно (каждые 10 циклов) опрашивает датчик массы. Как только не выполняется условие m=0, происходит переход к следующему блоку программы. А именно -- закрытие дверей1. Закрытие дверей заключается не только в подаче кода-закрытия на Р.1.6. и Р.1.4. Попутно с запуском подпрограммы задержки (на время закрытия двери) происходит опрос датчиков для обнаружения возможного факта нарушения регламента работы сдвижных дверей. Т.е. если во время задержки двери не будут закрыты, поступит команда на их повторное открывание (ситуация -- пользователь не спел войти в шлюз). Если по истечении одной минуты конфликтная ситуация не разрешится с компьютера поступит код-сигнал блокировки дверей до прихода службы безопасности. Если пользователь находится в шлюзе (m не равна 0, т.е. код на порте Р.2.1-Р2.7 не равен 0) программа переходит к ожиданию кода своего сетевого адреса на входе УАПП (см. ввод кода). После установки связи контроллер выдает в моноканал код соответствующий массе пользователя после чего переходит в режим ожидания1 (см. приложение 3) ответа от компьютера. Полученный код сверяется с адресом 0СН в случае совпадения -- переход к подпрограме “открытия двери”.

Основные подпрограммы приведены в приложении 3

6.Разработка конструкции печатной платы

Под конструктивным расчетом печатной платы понимается расчет геометрических размеров платы, компоновка радиодеталей на плате, выбор материала платы и др.

В данном дипломном проекте необходимо произвести расчет платы контроллера шлюза. В начале произведем расчет предполагаемой площади и геометрических размеров, затем выберем материал печатной платы, и произведем трассировку. Для расчета площади платы необходимо подсчитать количество компонентов каждого класса, определить геометрические размеры этой платы.

По размещению проводящего рисунка печатные платы делятся на односторонние, двусторонние и многослойные.

Односторонняя печатная плата проста по конструкции и несложна в изготовлении, но при существующих системах трассировки на ней практически невозможно выполнить сложные схемы. Поэтому была произведена автоматическая трассировка платы в системе PCCARDS на две стороны. Высокая плотность проводников, полученная при трассировке, позволяет выполнить монтаж платы с высокой плотностью, что экономит материал платы.

В качестве основного материала для печатных плат используется фольгированные и нефольгированные листовые диэлектрики. Исходными для изготовления фольгированных диэлектриков могут быть бумага или стеклоткань, пропитанные синтетическими смолами или полимерные пленки из лавсана, фторопласта. На поверхность этих материалов приклеивается металлическая фольга.

В качестве материала для печатной платы выберем стеклотекстолит фольгированный СТФ - 2 со следующими параметрами: толщина фольги 35 мкм, толщина материала с фольгой 2 мм, прочность сцепления 450 гс/3 мм.

Размещение элементов конструкции печатной платы регламентируется условной координатной сеткой из двух взаимно перпендикулярных систем параллельных линий, расположенных на одинаковом ( 2.5 мм или 1.25 мм) расстоянии друг от друга. Центры монтажных отверстий и контактных площадок под выводы навесных радиоэлементов располагают в узлах координатной сетки.

Расчет размеров печатной платы произведем по формуле:

Sэ = k*(S1 + S2) (6.1)

где Sэ-суммарная площадь элементов;

S1-площадь малых элементов;

S2-площадь больших элементов; k - коэффициент плотности.

Для определения суммарной площади определим количество элементов.

Таблица 6.1.

НАИМЕНОВАНИЕ

КОЛ-ВО ЭЛЕМЕНТОВ

ПЛОЩАДЬ ЭЛЕМЕНТА

РЕЗИСТОРЫ

31

0.7

КОНДЕНСАТОРЫ

10

0.3

ДИОДЫ

8

0.4

КВАРЦ

1

5.5

ТРАНЗИСТОРЫ

5

4

0.8

0.6

ОПТРОНЫ

2

3.8

МИКРОСХЕМЫ

5

1

1

1.5

4.6

2.1

S1 = Sк + Sд = 10*0,3 + 8*0,4 = 6,2 см2

S2= Sр + Sмс + Sкв + Sтр + Sоп = 0,7*31+5,5*1+0,8*5+0,6*4+3,8*2+1,5*5+4,6*1+2,1*1 = 58.7 см2

К=8 , (Монтаж двухсторонний при средней плотности)

Sэ = 8*(6,2 + 58,7) = 519,2 см2

Печатная плата разведена автоматически, элементы размещались на площади 150:150 мм. Соотношение сторон выбрано 1:1. После разводки элементы удалось разместить более компактно получили 140х140 мм соответственно.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.