рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыБеспроводные телекоммуникационные системы

Стандарт IEEE 802.16 предусматривает схему с модуляцией одной несущей (в каждом частотном канале) и допускает три типа квадратурной амплитудной модуляции: четырехпозиционную QPSK и 16-позиционную 16-QAM(обязательны для всех устройств), а также 64-QAM(опционально).

Данные на физическом уровне передаются в виде непрерывной последовательности кадров. Каждый кадр имеет фиксированную длительность - 0,5; 1 и 2 мс. Кадр состоит из преамбулы (синхропоследовательности длиной 32 QPSK-символа), управляющей секции, последовательности пакетов с данными. Поскольку определяемая стандартом IEEE 802.16 система двунаправленная, необходим дуплексный механизм. Он предусматривает как частотное, так и временное разделение восходящего и нисходящего каналов. При временном дуплексировании каналов кадр делится на нисходящий и восходящий субкадры, разделенные специальным интервалом. При частотном дуплексировании восходящий и нисходящий каналы транслируются каждый на своей несущей.

MAC-уровень IEEE 802.16 подразделяется на три подуровня - подуровень преобразования сервиса (сервисы - это различные приложения), основной подуровень и подуровень защиты. На подуровне защиты реализуются механизмы аутентификации и шифрование данных. На подуровне преобразования сервиса происходит трансформация потоков данных протоколов верхних уровней для передачи данных через сети IEEE 802.16. Для каждого типа приложений верхних уровней стандарт предусматривает свой механизм преобразования. На основном подуровне MAC формируются пакеты данных, которые затем передаются на физический уровень и транслируются через канал связи. Пакет MAC включает заголовок и поле данных, за которым может следовать контрольная сумма.

Ключевой момент в стандарте IEEE 802.16 - это понятие сервисного потока и связанные с ним понятия «соединение» и «идентификатор соединения» (CID). Сервисным потоком в стандарте IEEE 802.16 называется поток данных, связанный с определенным приложением. В этом контексте соединение - это установление логической связи на MAC-уровнях на передающей и приемной стороне для передачи сервисного потока. Каждому соединению присваивается 16-разрядный идентификатор CID, с которым однозначно связаны тип и характеристики соединения. Сервисный поток характеризуется набором требований к каналу передачи информации (к времени задержки символов, уровню флуктуаций задержек и гарантированной пропускной способности). Каждому сервисному потоку присваивается идентификатор SFID, основываясь на котором БС определяют необходимые параметры связанного с данным сервисным потоком конкретного соединения.

Основной принцип предоставления доступа к каналу в стандарте IEEE 802.16 - это доступ по запросу. Ни одна АС (абонентская станция) не может ничего передавать, кроме запросов на регистрацию и предоставление канала, пока БС не разрешит ей этого, т.е. отведет временной интервал в восходящем канале и укажет его расположение. АС может, как запрашивать определенный размер полосы в канале, так и просить об изменении уже предоставленного ей канального ресурса. Стандарт IEEE 802.16 предусматривает два режима предоставления доступа - для каждого отдельного соединения и для всех соединений определенной АС. Очевидно, что первый механизм обеспечивает большую гибкость, однако второй существенно сокращает объем служебных сообщений и требует меньшей производительности от аппаратуры. [7]

2. Системы сложных сигналов для телекоммуникационных систем

2.1 Спектры сигналов

Спектр сигнала s(t) определяется преобразованием Фурье

В общем случае спектр является комплексной функцией частоты щ. Спектр может быть представлен в виде

,

где |S(щ)| - амплитудный, а ц(щ) - фазовый спектр сигнала s(t).

Спектр сигнала обладает следующими свойствами:

1. Линейность: если имеется совокупность сигналов s1(t), s2(t), …, причем s1(t)S1(щ), s2(t)S2(щ), …, то сумма сигналов преобразуется по Фурье следующим образом:

,

где ai - произвольные числовые коэффициенты.

2. Если сигналу s(t) соответствует спектр S(щ), то такому же сигналу, смещенному на t0, соответствует спектр S(щ) умноженный на e-jщt0 s(t-t0)S(щ)e-jщt0.

3. Если s(t)S(щ), то

4. Если s(t)S(щ) и f(t)=ds/dt, то f(t)F(щ)=jщS(щ).

5. Если s(t)S(щ) и g(t)=?s(t)dt, то g(t)G(щ)=S(щ)/jщ.

6. Если u(t)U(щ), v(t)V(щ) и s(t)=u(t)v(t), то

.

Сигнал находится по спектру с помощью обратного преобразования Фурье

.[4]

Рассмотрим спектры некоторых сигналов.

1. Прямоугольный импульс.

Рис.2.1. Спектр прямоугольного импульса.

2. Гауссовский импульс.

s(t)=Uexp(-вt2)

Рис.2.2. Спектр гауссовского импульса.

3. Сглаженный импульс

С помощью численного интегрирования находим спектр S(щ).

S(0)=2.052 S(6)=-0.056

S(1)=1.66 S(7)=0.057

S(2)=0.803 S(8)=0.072

S(3)= 0.06 S(9)=0.033

S(4)=-0.259 S(10)=-0.0072

S(5)=-0.221 S(щ)=S(-щ)

Рис. 2.3. Спектр сглаженного импульса.

2.2 Корреляционные свойства сигналов

Для сравнения сигналов, сдвинутых во времени, вводят автокорреляционную функцию (АКФ) сигнала. Она количественно определяет степень отличия сигнала u(t) и его смещенной во времени копии u(t - ф) и равна скалярному произведению сигнала и копии:

Непосредственно видно, что при ф=0 автокорреляционная функция становится равной энергии сигнала: Bu(0)=Eu.

Автокорреляционная функция четна: Bu(ф)=Bu(-ф).

При любом значении временного сдвига ф модуль АКФ не превосходит энергии сигнала |Вu(ф)|?Bu(0)=Eu.

АКФ связана со спектром сигнала следующим соотношением:

.

Верно и обратное:

.

Для дискретного сигнала АКФ определяется в следующем виде:

и обладает следующими свойствами.

Дискретная АКФ четна: Bu(n)=Bu(-n).

При нулевом сдвиге АКФ определяет энергию дискретного сигнала:

.

Иногда вводят взаимнокорреляционную функцию (ВКФ) сигналов, которая описывает не только сдвиг сигналов друг относительно друга по времени, но и различие в форме сигналов.

ВКФ определяется следующим образом

для непрерывных сигналов и

для дискретных сигналов. [4]

Рассмотрим АКФ некоторых сигналов.

1. Последовательность прямоугольных импульсов

Рис. 2.4. АКФ последовательности прямоугольных импульсов.

2. 7-позиционный сигнал Баркера

Bu(0)=7, Bu(1)= Bu(-1)=0, Bu(2)= Bu(-2)=-1, Bu(3)= Bu(-3)=0, Bu(4)= Bu(-4)=-1, Bu(5)= Bu(-5)=0, Bu(6)= Bu(-6)=-1, Bu(7)= Bu(-7)=0.

Рис. 2.5. АКФ 7-позиционного сигнала Баркера.

3. 8-позиционные функции Уолша

Функция Уолша 2-го порядка

Bu(0)=8, Bu(1)= Bu(-1)=3, Bu(2)= Bu(-2)=-2, Bu(3)= Bu(-3)=-3, Bu(4)= Bu(-4)=-4, Bu(5)= Bu(-5)=-1, Bu(6)= Bu(-6)=2, Bu(7)= Bu(-7)=1, Bu(8)= Bu(-8)=0.

Рис. 2.6. АКФ функции Уолша 2-го порядка.

Функция Уолша 7-го порядка

Bu(0)=8, Bu(1)= Bu(-1)=-7, Bu(2)= Bu(-2)=6, Bu(3)= Bu(-3)=-5, Bu(4)= Bu(-4)=4, Bu(5)= Bu(-5)=-3, Bu(6)= Bu(-6)=2, Bu(7)= Bu(-7)=-1, Bu(8)= Bu(-8)=0.

Рис. 2.7. АКФ функции Уолша 7-го порядка.

2.3 Типы сложных сигналов

Сигнал - это физический процесс, который может нести полезную информацию и распространяться по линии связи. Под сигналом s(t) будем понимать функцию времени, отображающую физический процесс, имеющий конечную длительность Т.

Сигналы, у которых база В, равная произведению длительности сигнала Т на ширину его спектра, близка к единице, называются «простыми» или «обыкновенными». Различение таких сигналов может быть осуществлено по частоте, времени (задержке) и фазе.

Сложные, многомерные, шумоподобные сигналы формируются по сложному закону. За время длительности сигнала Т он подвергается дополнительной манипуляции (или модуляции) по частоте или фазе. Дополнительная модуляция по амплитуде используется редко. За счет дополнительной модуляции спектр сигнала Дf (при сохранении его длительности Т) расширяется. Следовательно, для такого сигнала B=T Дf>>1.

При некоторых законах формирования сложного сигнала его спектр оказывается сплошным и практически равномерным, т.е. близким к спектру шума с ограниченной шириной полосы. При этом функция автокорреляции сигнала имеет один основной выброс, ширина которого определяется не длительностью сигнала, а шириной его спектра, т.е. имеет вид, аналогичный функции автокорреляции шума с ограниченной полосой частот. В связи с этим такие сложные сигналы называют шумоподобными. [5]

Шумоподобные сигналы получили применение в широкополосных системах связи, так как: обеспечивают высокую помехозащищенность систем связи; позволяют организовать одновременную работу многих абонентов в общей полосе частот; позволяют успешно бороться с многолучевым распространением радиоволн путем разделения лучей; обеспечивают лучшее использование спектра частот на ограниченной территории по сравнению с узкополосными системами связи.

Известно большое число различных шумоподобных сигналов (ШПС). Тем не менее, выделяют следующие основные ШПС: частотно-модулированные сигналы; многочастотные сигналы; фазоманипулированные сигналы; дискретные частотные сигналы; дискретные составные частотные сигналы.

Частотно-модулированные сигналы (ЧМ) являются непрерывными сигналами, частота которых меняется по заданному закону (рис. 2.8.).

Рис. 2.8. ЧМ сигнал.

В системах связи необходимо иметь множество сигналов. При этом необходимость быстрой смены сигналов и переключения аппаратуры формирования и обработки приводят к тому, что закон изменения частоты становится дискретным. При этом от ЧМ сигналов переходят к ДЧ сигналам.

Многочастотные (МЧ) сигналы являются суммой N гармоник u1(t)…uN(t), амплитуды и фазы которых определяются в соответствии с законами формирования сигналов (рис. 2.9.).

Рис. 2.9. МЧ сигнал.

МЧ сигналы являются непрерывными и для их формирования и обработки трудно приспособить методы цифровой техники.

Фазоманипулированные (ФМ) сигналы представляют последовательность радиоимпульсов, фазы которых изменяются по заданному закону (рис. 2.10., а). Обычно фаза принимает два значения (0 или р). При этом радиочастотному ФМ сигналу соответствует видео-ФМ сигнал (рис. 2.10., б).

Рис. 2.10. ФМ сигнал.

ФМ сигналы весьма распространены, т.к. они позволяют широко использовать цифровые методы при формировании и обработке, и можно реализовать такие сигналы с относительно большими базами.

Дискретные частотные (ДЧ) сигналы представляют последовательность радиоимпульсов (рис. 2.11.), несущие частоты которых изменяются по заданному закону.

Рис. 2.11. ДЧ сигнал.

Дискретные составные частотные (ДСЧ) сигналы являются ДЧ сигналами, у которых каждый импульс заменен шумоподобным сигналом.

На рис. 2.12. изображен видеочастотный ФМ сигнал, отдельные части которого передаются на различных несущих частотах. [6]

Рис. 2.12. ДСЧ сигнал.

2.4 Производные системы сигналов

Производным сигналом называется сигнал, который получается в результате перемножения двух сигналов. В случае ФМ сигналов перемножение должно осуществляться поэлементно или, как чаще называют, посимвольно. Система, составленная из производных сигналов, называется производной. Среди производных систем особое значение имеют системы, построенные следующим образом. В качестве основы используется некоторая система сигналов, корреляционные свойства которой не вполне удовлетворяют требованиям к КФ, но которая обладает определенными преимуществами с точки зрения простоты формирования и обработки. Такая система называется исходной. Затем выбирается сигнал, который обладает определенными свойствами. Такой сигнал называется производящим. Умножая производящий сигнал на каждый сигнал исходной системы, получаем производную систему. Производящий сигнал следует выбирать так, чтобы производная система была действительно лучше исходной, т.е. чтобы она обладала хорошими корреляционными свойствами. Комплексная огибающая производного сигнала Sмm(t) равна произведению комплексных огибающих исходных сигналов Um(t) и производящего сигнала Vм(t), т.е. Sмm(t)= Um(t)Vм(t). Если индексы изменяются в пределах m=1..M, м=1..H, то объем производной системы сигналов L=MH.

Выбор производящих сигналов определяется рядом факторов, в том числе и исходной системой. Если сигналы исходной системы широкополосные, то производящий сигнал может быть широкополосным и иметь малые уровни боковых пиков функции неопределенности, близкие к среднеквадратическому значению. Если же сигналы исходной системы узкополосные, то достаточно выполнения неравенства FV>>FU (FV - ширина спектра производящих сигналов, FU - ширина спектра исходных сигналов) и требования малости боковых пиков АКФ.

Возьмем в качестве исходной - систему Уолша. В этом случае производящие сигналы должны быть широкополосными и иметь хорошие АКФ. Кроме того, производящий сигнал должен иметь столько же элементов, что и исходные сигналы, т.е. N=2k элементов, где k - целое число. Этим условиям в целом удовлетворяют нелинейные последовательности. Поскольку основным является требование малости боковых пиков АКФ, то в классе нелинейных последовательностей были отобраны наилучшие сигналы с числом элементов N=16, 32, 64. Эти сигналы показаны на рис. 2.13. На рис. 2.13. указаны также значения числа блоков м для каждого производящего сигнала. Они близки к оптимальному значению м0=(N+1)/2. Это и является необходимым условием получения хорошей АКФ с малыми боковыми пиками.

Рис. 2.13. Производящие ФМ сигналы.

Объем производной системы равен объему системы Уолша N. Производные системы обладают лучшими корреляционными свойствами, чем системы Уолша. [6]

3. Модуляция сложных сигналов

Страницы: 1, 2, 3, 4, 5




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.