рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыБлок интерфейсных адаптеров

Обработка заготовок по контуру производится после полного изготовления ПП. Чистовой контур получают штамповкой, обработкой на гильотинных ножницах, на станках с прецизионными алмазными пилами и фрезерованием. Для исключения повреждения рисунка ПП при групповой обработке пакета заготовок между ними прокладывают картон, а пакет помещают между прокладками из листового гетинакса.

В последнее время при чистовой обработке все большее распространение получают контурно-фрезерные многошпиндельные станки с ЧПУ, которые обеспечивают точность размеров +-0,025 мм, позволяют обрабатывать внешние и внутренние контуры за одно крепление, характеризуются высокой производительностью (15OO-2000 плат/ч) и надежностью. Они снабжаются устройствами для автоматической смены фрез, защитными скафандрами для ограждения оператора от шума, пыли и стружки при обработке, бесступенчатым регулированием скорости вращения инструмента в диапазоне 15-60 тыс. об/мин.

Выходной контроль платы предназначен для определения степени ее соответствия требованиям чертежа, технических условий и стандартов. Основными видами выходного контроля являются: контроль внешнего вида, инструментальный контроль геометрических параметров и оценка точности выполнения отдельных элементов, проверка металлизации отверстий, определение целостности токопроводящих цепей и сопротивления изоляции. При изготовлении чаще других возникают такие дефекты, как короткое замыкание между элементами печатного монтажа, разрыв токопроводящих цепей, отслоение элементов печатного монтажа от диэлектрического основания, выход отверстия за пределы контактной площадки, коробление плат и др. Некоторые из этих дефектов определяются визуально.

Геометрические характеристики ПП (толщина, диаметр отверстий, расстояние между центрами, величина коробления, габаритные размеры и смещение отверстий) контролируются с помощью стандартизированных инструментов для измерения линейных размеров. Погрешности формы элементов рисунка ПП определяются с помощью проектора при 10-20-кратном стереоскопическом увеличении (КПП-1) или микроскопов типа МБС.

Для проверки металлизации монтажных отверстий используют разрушающий (на шлифах) или неразрушающий метод. Экспрессную проверку проводят путем измерения омического сопротивления контактного перехода при подаче тока силой 0,1 А. Границей качественного и бракованного соединений является величина 500 мкОм, которая уточняется для каждого типа монтажного перехода. Разработанное программируемое оборудование позволяет измерять сопротивление в диапазоне 40-2000 мкОм с точностью +-1 %. Время контроля одного отверстия составляет 1 с.

Целостность токопроводящих цепей и сопротивление изоляции между проводниками проверяются электрическим методом на автоматических тестерах с ЧПУ. ПП посредством контактного устройства соединяется на входе через коммутатор с блоком опроса, а на выходе - с измерительным устройством. Контактное устройство представляет собой матрицу из иглообразных подпружиненных контактов, расположенных в узлах координатной сетки и прижатых к плате с усилием в 1 Н. В соответствии с записанной на перфоленте информацией на каждую проверяемую цепь подается сигнал величиной 5-12 В. Результат измерения сравнивается с эталонной величиной, хранящейся в памяти микро-ЭВМ, и на основании этого сравнения определяется качество цепи. Снабжение блока опроса высоковольтным источником (150-1500 В) позволяет контролировать электрическую прочность изоляции. Максимальная скорость контроля одной цепи составляет 400 нс.

Испытания ПП позволяют в условиях климатических и механических воздействий оценить их соответствие требованиям ТУ и установить скрытые дефекты.

11. ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ

11.1 Оздоровление воздушной среды в помещении при эксплуатации, испытании проектируемого устройства

Технологические процессы радиоэлектронного производства сопряжены с выделением в воздух и использованием вредных веществ, оказывающих токсическое действие на организм человека вследствие загрязнения ими кожных покровов, попадания внутрь организма вместе с вдыхаемым воздухом, другими путями [1].

В производственном помещении сборки и монтажа печатной платы адаптера АРЛС применяется следующее оборудование: автомат распаковки ИМС из тары-спутника ГГ-2628, автомат формовки выводов ИМС ГГ-2629-01, конвейер ПТ 94, расклёпочник цеховой, автомат П-образной формовки выводов ЭРЭ ГГ-1611, полуавтомат установки радиоэлементов и ИМС УР-10, установка пайки АП-4, УЗ ванна УЗВ-0,4, приспособление для визуального контроля ГГ 63669/02. Кроме перечисленного автоматизированного и механизированного оборудования в производственном помещении находятся рабочие места, на которых ведутся такие операции производственного процесса, как формовка выводов электролитических конденсаторов, допайка непропаянных контактов ПП после пайки волной припоя, снятие изоляции, покрытие ПП лаком, маркировка, контроль. При этом на перечисленных операциях применяются пинцеты, электропаяльники. В помещении также имеются резервные рабочие места и рабочее место мастера. Общее количество рабочих мест составляет 21.

При сборке и монтаже ПП адаптера АРЛС применяются такие материалы, как припой ПОС-61, флюс, лак УР-231, спирт, маркировочная краска.

Рабочие места, на которых ведутся операции снятия изоляции проводов, их лужения, обезжиривание плат, их лужение и пайка волной, допайка контактов, очистка плат от остатков флюса, маркировка и покрытие лаком, расположены в помещении, отделённом от основного производственного цеха стенами. Оно имеет отдельный вход и проёмы для входа и выхода ленты конвейера.

В процессе производства человек подвергается воздействию многочисленных производственных факторов, различных по своему происхождению, формам проявления, характеру действия, и другим. В ряде случаев это воздействие может быть неблагоприятным. Такая ситуация возникает, когда система Ічеловек - производственная средаІ не сбалансирована, количественные характеристики производственных факторов отклоняются от нормируемого уровня и не соответствуют характеристикам человека [2].

Производственные факторы, воздействие которых на работающего в определенных условиях приводит к повреждению организма (травме), внезапному резкому ухудшению здоровья или заболеванию, снижению работоспособности, называются соответственно опасными или вредными [3].

К опасным производственным факторам при сборке и монтаже ПП адаптера АРЛС можно отнести электрический ток, движущиеся части машин и механизмов, незащищённые подвижные элементы производственного оборудования. Их воздействие наносит ущерб здоровью человека почти мгновенно, и приводит к такому негативному явлению, как производственный травматизм, характеризующийся совокупностью производственных травм.

К вредным производственным факторам в данном случае можно отнести шум и вибрацию оборудования, недостаточную освещенность, запылённость и загазованность производственной среды. Воздействие вредных производственных факторов на человека имеет кумулятивный характер и приводит к такому негативному явлению, как профессиональные заболевания.

Так, например, при длительном воздействии шума и недостаточном отдыхе могут произойти стойкие патологические отклонения в слуховом анализаторе и сердечено-сосудистой системе и, как следствие этого, вызвать заболевание органов кровообращения (например, гипертония), а затем и необратимое снижение слуховой чувствительности - тугоухость [2].

Вредное влияние шума существенно сказывается на реакции работающего человека, ведет к ослаблению его внимания.

Шум воздействует на общее психическое состояние человека, вызывает ощущение плохого самочувствия, стеснённости, неуверенности, тревоги, способствует возникновению быстрой утомляемости, которая приводит к увеличению травматизма, снижению работоспособности и производительности труда [2].

Шумовые явления обладают свойством кумуляции. Накапливаясь в организме, они все больше и сильнее угнетают нервную систему.

Вредность шума как фактора производственной среды приводит к необходимости ограничивать его уровень. Важным средством профилактики и борьбы с вредным воздействием шума является соблюдение гигиенических нормативов в соответствии с ГОСТ 12.1.003-76 Шум. Общие требования безопасности.

Для предотвращения неблагоприятного воздействия шума на организм работающих должен проводиться комплекс мероприятий, включающих технические, организационные и медико-профилактические мероприятия [3].

Одним из основных технических мероприятий является устранение в процессе проектирования, конструирования и эксплуатации оборудования причин шума или, по крайней мере, значительное их ослабление в самом источнике образования. Добиваются этого с помощью разработки рациональной конструкции оборудования. Качественный монтаж оборудования, регулярный ремонт, смазка, смена износившихся деталей способствуют устранению шума, сопутствующего производственному процессу.

К организационным мероприятиям по борьбе с шумом на производстве относятся внедрение рационального режима труда и отдыха.

Комплекс мероприятий по борьбе с шумом включает организацию постоянного контроля фактического состояния шумовой обстановки в производственном помещении, с одной стороны, и здоровьем работающих, с другой.

Одним из наиболее опасных производственных факторов, имеющихся в производственном помещении сборки и монтажа платы адаптера АРЛС, является электрический ток. Защита от поражения электрическим током является составной частью электробезопасности.

Электробезопасность представляет собой систему организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги [4].

Возникновение электротравмы может быть связано:

- с однофазным прикосновением не изолированного от земли (основания) человека к неизолированным токоведущим частям электрооборудования, находящегося под напряжением;

- с одновременным прикосновением человека к двум токоведущим неизолированным частям электрооборудования, находящегося под напряжением;

- с прикосновением человека, не изолированного от земли (основания), к металлическим корпусам (корпусу) электрооборудования, оказавшегося под напряжением.

Действие электрического тока на живую ткань носит своеобразный и разносторонний характер. Проходя через организм человека, электрический ток производит термическое, электрическое, механическое и биологическое действие [4].

Действие электрического тока на организм человека нередко приводит к различным электротравмам, которые условно разделяют на местные и общие. Степень опасного и вредного воздействия на человека электрического тока зависит: от рода и величины напряжения и тока; частоты электрического тока; пути тока через тело человека; продолжительности воздействия электрического тока; условий внешней среды [3].

По степени поражения людей электрическим током рассматриваемое производственное помещение относится к помещению с повышенной опасностью, т.к. имеется возможность одновременного прикосновения человека к имеющим соединение с землёй металлоконструкциям здания, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам оборудования - с другой.

Основные меры защиты от повреждения электрическим током: изоляция; недоступность токоведущих частей; применение малого (не свыше 42В) напряжения для электропитания электропаяльников; защитное заземление электропаяльников и зануление автоматического оборудования.

Условием безопасности при защитном заземлении является достаточно малое сопротивление заземляющего устройства RЗУ. В нашем случае оно должно быть не более 10 Ом [5].

Производственный процесс сборки и монтажа печатной платы сопровождается образованием и выделением вредных веществ, к которым относятся различные газы, пары, пыль.

По степени воздействия на организм вредные вещества в соответствии с Санитарными нормами проектирования промышленных предприятий (СН-245-71) и ГОСТ 12.1.007-76 Вредные вещества. Классификация и общие требования безопасности подразделяются на четыре класса опасности: 1 - вещества чрезвычайно опасные; 2 - вещества высокоопасные; 3 - вещества умеренно опасные; 4 - вещества малоопасные.

По ГОСТ 12.1.007-76 к вредным веществам относятся вещества, которые при контакте с организмом человека в случае нарушения требований безопасности могут вызвать профессиональные заболевания или отклонения в состоянии здоровья как в процессе работы, так и в отдалённые сроки жизни настоящего и последующих поколений.

Предельно допустимой концентрацией (ПДК) вредных веществ в воздухе рабочей зоны называют такие концентрации, которые при ежедневной работе в течении 8ч или при другой продолжительности, но не более 41ч в неделю, в течении всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдельные сроки жизни настоящего и последующего поколений. ПДК вредных веществ в воздухе рабочей зоны устанавливается ГОСТ 12.1.005-76.

Все вредные вещества по характеру воздействия на человека можно разделить на две группы: токсичные и нетоксичные.

Нетоксичные вещества в большинстве своём оказывают раздражающее действие на слизистые оболочки дыхательных путей, глаз, кожу работающих.

Радиомонтажные работы способствуют выделению в воздух рабочей зоны различных вредных веществ. В их составе [6]:

аэрозоль свинца - выделяется при лужении и пайке припоями, содержащими свинец. Поражает все органы и системы организма, обладает кумулятивным свойством. Класс опасности 1, ПДК - 0,01 мг/м3;

окись углерода - образуется при обжиге хлопчатобумажной и шелковой изоляции. Вызывает головную боль, головокружение, бессоницу, нарушение обмена веществ, потерю сознания. Класс опасности 4, ПДК - 20 мг/м3;

этиловый спирт, ацетон, хлористый метилен - испаряются при отмывке остатков флюса. Последовательно поражают все отделы центральной нервной системы, обладают кумулятивным свойством. Класс опасности 4, ПДК - 200 мг/м3;

ацетон, бутилацетат, толуол - испаряются при обезжиривании и маркировке поверхности платы. Класс опасности 4, ПДК - 200 мг/м3.

Обеспечение оптимальных для жизнедеятельности человека параметров воздушной среды осуществляется с помощью обширного комплекса методов и средств.

Главный из них - разработка совершенных технологических процессов, исключающих образоавние пыли и газов и выделение их в окружающую среду или, по крайней мере, ограничивающих их до минимума.

Механизация и автоматизация производственных процессов, использование более совершенных видов оборудования уменьшает поступление вредных веществ в рабочую зону. Применение механизированной установки для пайки волной позволяет исключить контакт свинца с кожей работающих.

Как отмечалось выше, рабочие места, на которых ведутся операции технологического процесса, связанные с выделением вредных веществ, изолированы от основного производственного помещения. Это позволяет исключить распространение вредных веществ по всему помещению. Обеспечение чистоты воздуха рабочей зоны на операциях пайки, смывки остатков флюса, маркировки осуществляется при помощи местной вытяжной вентиляции.

К организационным мероприятиям по обеспечению нормального состава воздушной среды относится контроль за работой вентиляционного оборудования. Периодически по графику проверяют качество монтажа, производительность вентиляционной установки. С помощью санитарно-гигиенических испытаний проверяют чистоту воздуха в помещении.

На рабочих местах допайки контактов применяются отсосы типа в вертикальной панели (рисунок 1), а для удаления вредных веществ с операции пайки волной применяется отсос над установкой (рисунок 2).

Рисунок 1

Рисунок 2

Произведем расчет вышеуказанной вентиляции.

I. Определим размеры вытяжного отверстия в вертикальной плоскости для эффективного удаления вредностей от места пайки на расстоянии х = 0,4м от центра отверстия при соотношении сторон отверстия а/b = 1,0. Подвижность воздуха в помещении VП = 0,2м/с, а необходимая скорость потока во всасывающем отверстии V0 = 4м/с.

Определим требуемую скорость воздуха в месте пайки VХ:

(1)

Определим безразмерный коэффициент К

(2)

Подставляя значения в формулу (2), получим

По графику на рисунке 2.5,б [6]для соотношения а/b = 1,0 и при К=10 определим соотношение х/b = 1,8.

Определим размеры отверстия:

Определим количество воздуха удаляемого местным отсосом и размеры отсасывающего патрубка при условии, чтобы в месте пайки скорость воздуха была VХ = 0,4 м/с. Местный отсос расположен на высоте h = 0,3 м от установки, а расстояние по горизонтали всасывающего отверстия х = 0,2 м. Скорость во всасывающем патрубке не должна превышать 4 м/с.

Находим соотношение х/h:

При по графику на рисунке 2.6 [6] находим К = 16.

Определяем количество воздуха, удаляемого местным отсосом

(3)

Подставляя значения в формулу (3), получим:

м3/ч

Принимаем скорость в патрубке VО = 4 м/с. Тогда сечение патрубка

(4)

м2

Полагая, что патрубок круглой формы, определяем его диаметр

(5)

м

Необходимый воздухообмен можно определить по формуле (6)

(6)

где - коэффициент неравномерности распределения вредных веществ по помещению (1,2 ... 2,0); GВВ - количество вредных веществ, поступающих в воздух рабочей зоны, кг/ч; К1 - концентрация вредных веществ в удаляемом воздухе (К1 ПДК), мг/м3; К2 - концентрация вредных веществ в поступающем в помещение воздухе (К2 ПДК), мг/м3.

Значение GBB для пайки волной принимается 5000 мг/ч; значения К1 и К2 принимаем соответственно 0,01 мг/м3 и 0,003 мг/м3. Тогда

м3/ч

Так как количество воздуха, удаляемого местным отсосом превышает значение количества воздуха, которое необходимо удалить, то можно сделать вывод о том, что концентрация вредных веществ в воздухе не превысит ПДК.

ЗАКЛЮЧЕНИЕ

В результате работы над курсовым проектом была разработана конструкция блока интерфейсных адаптеров центрального вычислителя системы технического зрения, которая полностью отвечает современным эргономическим, массогабаритным и функциональным требованиям, а также другим требованиям технического задания.

Данное устройство разработано с учетом современных требований конструирования РЭС, основными требованиями выступают следующие:

обеспечение минимальных габаритов и веса устройства;

простота и удобство в эксплуатации;

высокая ремонтопригодность;

высокая надежность.

Спроектированный блок интерфейсных адаптеров центрального вычислителя системы технического зрения имеет следующие характеристики:

Габариты:

длина, мм 483;

ширина, мм 295;

высота, мм 264.

Масса, кг, не более 5.

Климатические условия исполнения УХЛ 4.2 по ГОСТ 15150-69.

В ходе курсового проектирования была проанализирована схема электрическая принципиальная, произведен выбор элементной базы.

Параметры надежности, рассчитанные в ходе курсового проекта, выше заданных в техническом задании.

Расчет теплового режима позволяет судить о том, что меры защиты устройства от тепловых воздействий выбраны верно и что они обеспечат нормальный режим работы теплонагруженных элементов устройства.

Результатом разработки явились данная пояснительная записка и комплект конструкторской документации на разрабатываемое изделие.

ЛИТЕРАТУРА

Сетевой контроллер: А.с. №156464 СНГ: МКИ Н 04 Q9/00. Бюл. №18 1990г.

Устройство передачи и приема информации: А.с. №1734241 СНГ: МКИ Н 04 Q9/00. Бюл №18 1990г.

Устройство преобразования и коммутации сигналов: А.с. №1566505 СНГ: МКИ Н 04 Q9/00. Бюл. №19 1990г.

Устройство для опроса информационных датчиков: А.с. №818713 СНГ: МКИ Н 04 Q9/00. Бюл. №20 1993г.

Устройство коммутации асинхронных сигналов: А.с. №1550630 СНГ: МКИ Н 04 Q9/00. Бюл. №10 1990г.

Система управления передачей данных: А.с. №1-23039 Япония: МКИ Н 04 Q9/14. Бюл. №2 1990г.

Связная коммутационная сеть для сигналов изображения и данных: А.с. №3804283 ФРГ: МКИ Н 04 Q9/00. Бюл. №3 1990г.

Система передачи данных: А.с. №1-48719 Япония: МКИ Н 04 Q9/14. Бюл. №6 1990г.

Устройство управления доступом к общему каналу связи: А.с. №1598215 СНГ: МКИ Н 04 Q9/00. Бюл. №1 1990г.

Система контроля и управления: А.с. №2217074 Великобритания: МКИ Н 04 Q9/00. Бюл. №3 1991г.

Система управления устройством телеконтроля: А.с. №2-89496 Япония: МКИ Н 04 Q9/00. Бюл. №4 1991г.

Система телеуправления: А.с. №2-89499 Япония: МКИ Н 04 Q9/00. Бюл №4 1991г.

Базовый принцип конструирования РЭА / Е.М. Парфенов, В.Ф. Афанасенко, В.И. Владимиров, Е.В. Саушкин; Под ред. Е.М. Парфенова. - М.: Радио и связь, 1981.

Варламов Р.Г. Компоновка радиоэлектронной аппаратуры. Изд. 2-е переработанное. - М.: Сов. радио, 1975.

Роткоп Л.Л., Спокойный Ю.Е. Обеспечение тепловых режимов при конструировании радиоэлектронной аппаратуры. - М.: Сов. радио, 1976.

Конструирование радиоэлектронных средств: Учеб. пособие для студентов специальности «Конструирование и технология радиоэлектронных средств» / Н.С. Образцов, В.Ф. Алексеев, С.Ф. Ковалевич и др.; Под ред. Н.С. Образцова. - Мн.: БГУИР, 1994.

Гелль П.П., Иванов-Есипович Н.К. Конструирование и микроминиатюризация радиоэлектронной аппаратуры. - Л.: Энергоатомиздат, 1984.

Справочник конструктора-приборостроителя. Проектирование. Основные нормы / В.Л. Соломахо, Р.И. Томилин, Б.И. Цитович, Л.Г. Юдовин. - Мн.: Выш.шк., 1988.

Поляков К.П. Конструирование приборов и устройств радиоэлектронной аппаратуры. - М.: Радио и связь, 1982.

Каленкович Н.И. и др. Механические воздействия и защита РЭС: Учеб.пособие для вузов / Н.И. Каленкович, Е.П. Фастовец, Ю.В. Шамгин. - Мн.: Выш.шк., 1989.

Хлопов Ю.Н., Боровиков С.М., Алефиренко В.М., Несмелов В.С., Алексеев В.Ф., Воробьева Ж.С., Образцов Н.С. Методическое пособие к курсовому проектированию по курсу «Конструирование и микроминиатюризация РЭА». - Мн.: РТИ, 1983.

Карпушин В.Б. Вибрации и удары в радиоэлектронной аппаратуре. - М.: Сов.радио, 1971.

Шимкович А.А. Механические воздействия и защита радиоэлектронных средств. Методическое пособие по курсу «Конструирование радиоэлектронных средств», Часть 2. - Мн.: РТИ, 1991.

Гурский М.С. Лаб. практикум по курсу «Инженерные методы защиты радиоэлектронных средств от дестабилизирующих факторов», Часть 1. - Мн.: БГУИР, 1984.

Парфенов Е.М. и др. Проектирование конструкций радиоэлектронной аппаратуры: Учеб.пособие для вузов / Е.М. Парфенов, Э.Н. Камышная, В.П. Усачев. - М.: Радио и связь, 1989.

Проектирование приборных панелей радиоэлектронной аппаратуры. Метод.пособие по курсу «Конструирование и микроминиатюризация радиоэлектронной аппаратуры» / Ю.В. Шамгин, В.М. Алефиренко, Е.П. Фастовец и др. - Мн.: МРТИ, 1976.

Введение в эргономику. / Под.ред. В.П. Зинченко. - М.: Сов.радио, 1974.

Разработка и оформление конструкторской документации РЭА / Под.ред. Э.Т. Романычевой. - М.: Радио и связь, 1989.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.