рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыБлок контролю та управління пристрою безперебійного живлення ПБЖ-12

Для визначення площі конструкції ДП скористаємося формулою:

(2.1)

де - настановна площа i-го елемента навісного (дивитися таблицю 2.1);

- коефіцієнт втрат площі (=1...3), приймаємо =3.

З формули (2.1) отримуємо площу ДП БКУ:

S=3* (25.2*5+32.4+0.008*41+31.39*5+31.39*5+0.64*3+15.75*25+4.96*32+ +19.69+31.5+185.4+30*4+185.4+131.84+73.53*2+130.81+130.81*2+51.3+ +29.4+144*2+59.4+50*6+5.25*8+7*6+15.18+16.8*2+108.15+0.195+0.1*2+ +1031+6.44+48.6*2+590.49+16*4) =12213.579 мм2.

Блок контролю й управління є нестандартним виробом. Оскільки БКУ входить до складу більш складного пристрою, при виборі розміру друкованої плати повинні враховуватися габарити цього пристрою і розміри посадкового місця. На підставі цього вибираємо ДП розмірами 280х82.5 (згідно з вимогами ДСТУ 10317-79 співвідношення сторін ДП не більше 3: 1, однак допускається збільшення зазначеного співвідношення).

Площа вибраної ДП задовольняє розрахунку.

Як матеріал для виробництва друкованої плати вибираємо склотекстоліт з двостороннім фольгованим шаром (товщиною фольгованого шару - 35 мкм) - СФ-2-35 - для виготовлення двосторонніх друкованих плат.

На даний час склотекстоліт найбільш поширений матеріал для виготовлення друкованих плат. СФ-2-35 має наступні характеристики по ГОСТ 10316-78:

низьке водопоглинання (0.2...0.8%);

стійкість до жолоблення;

підвищена жорсткість і міцність;

питомий поверхневий опір сS = 1010...1011 Ом;

питомий об'ємний опір сV = 1011...1013 Ом * см;

діапазон робочих температур - 60... +105 ° С;

діелектрична проникність м = 6.

Розміщення НЕ на ДП здійснюємо відповідно до 4ГО.010.030 і 4ГО.010.009. При компонуванні ДП необхідно забезпечити відповідно до ДСТУ 23751-79 раціональне розміщення навісних елементів з урахуванням електричних зв'язків та теплового режиму із забезпеченням мінімальних значень довжин зв'язків, кількості переходів друкованих провідників із шару в шар, паразитних зв'язків між елементами, по можливості рівномірний розподіл мас навісних елементів по поверхні.

При розташуванні ІС, ЕРЕ на друкованій платі необхідно передбачати забезпечення основних технологічних вимог, що пред'являються до апаратури (автоматизоване складання, паяння, контроль, ремонтопридатність).

У процесі конструювання ДП виконуються такі розрахунки:

конструктивно-технологічний;

розрахунок по змінному струму;

розрахунок по постійному струму.

2.2 Конструктивно-технологічний розрахунок друкованої плати

Для визначення основних параметрів друкованого монтажу виконується конструктивно-технологічний розрахунок друкованого монтажу, який виконується з урахуванням виробничих похибок малюнку провідних елементів, фотошаблонів, базування, свердління й т.п.

Основні умовні позначення, які використовуються при розрахунку, і графічне зображення ДП наведені на рисунку 2.1

Рисунок 2.1 - Основні умовні позначення і графічне зображення ДП

Hn - товщина ДП;

Hnc - загальна сумарна товщина ДП;

Hм - товщина основи ДП;

hn - товщина фольги;

h - товщина провідного малюнку;

l - відстань між центрами елементів;

t - ширина друкованого провідника;

Q - відстань від краю плати до елементів провідного малюнка;

d - діаметр отвору;

b - ширина гарантійного паску;

D - діаметр контактної площадки;

S - відстань між краями сусідніх елементів провідного малюнка.

Мінімальний діаметр перехідного отвору:

, (2.2)

де Нп - товщина друкованої плати мм;

I - відношення діаметра металізованого отвору до товщини ДП (таблиця 2.2).

Згідно з ДСТУ 10316-78 вибираємо товщину діелектрика 1.5 мм.

Таблиця 2.2 - Номінальні значення основних параметрів друкованого монтажу для вузьких місць

Найменування розрахункового елемента

Позначення

Значення параметрів

для 3го класу точності ДП, мм

Ширина провідника

0,25

Відстань між краями сусідніх

елементів проводить малюнка

0,25

Відношення діаметру металізованого

отвору до товщини плати

I

0,33

Ширина гарантійного паска

b

0,1

Приймаємо діаметр перехідного отвору 0,7 мм.

Мінімальне значення діаметра монтажного отвору визначаємо із співвідношення:

, (2.3)

де dВ - максимальне значення діаметра виводу навісного елемента;

dН - нижнє граничне відхилення номінального значення діаметру отвору (таблиця 2.3);

-зазор між виводами і монтажним отвором для пайки ( = 0,1…0,4 мм).

Таблиця 2.3 - Допустимі похибки виконання конструктивних елементів

Похибка

Позначення

Значення

для 3 класу точності

Граничне відхилення номінального

значення діаметрі отвору, мм:

при dВ ? 1 мм

при dВ > 1 мм

d

± 0,05

± 0,10

Граничне відхилення ширини

провідника з покриттям, мм

t

+ 0,03

0,03

Позиційний допуск розташування

центрів отворів, мм

дd

0,10

Позиційний допуск розташування

контактних площадок, мм

дp

0,30

Позиційний допуск розташування

провідника,, мм

дl

0,05

Для виводів dВ =0,5 мм мінімальне значення діаметру монтажного отвору:

dмо1= 0,5+0,2+0,05=0,75 мм; приймаємо dмо1=0,8 мм;

для виводів dв=0,6 мм мінімальне значення діаметру монтажного отвору:

dмо2=0,6+0,2+0,05=0,85 мм; приймаємо dмо2=0,9 мм;

для виводів dв=0,7 мм мінімальне значення діаметру монтажного отвору:

dмо3=0,7+0,2+0,05=0,95 мм; приймаємо dмо3=1,0 мм;

для виводів dв=0,8 мм мінімальне значення діаметру монтажного отвору:

dмо4=0,8+0,2+0,05=1,05 мм; приймаємо dмо4=1,1 мм.

Номінальне значення ширини провідника t розраховуємо за формулою:

, (2.4)

де - мінімально допустима ширина провідника (таблица2.2);

tно - нижнє граничне відхилення ширини провідника (таблиця 2.3).

Для вільного місця номінальне значення ширини провідника:

Приймаються номінальне значення ширини провідника t1 = 0,3 мм.

Номінальне значення відстані між сусідніми елементами провідного малюнка визначаємо за формулою:

S = Sм + tво, (2.5)

де Sм - мінімально допустима відстань між сусідніми елементами провідного малюнка (табл.2.2);

tво - верхнє граничне відхилення ширини провідника (таблиця 2.3).

Для вільного місця номінальне значення відстані між сусідніми елементами провідного малюнка:

Приймаються номінальне значення відстані між сусідніми елементами провідного малюнка S = 0,3 мм. Розрахунок мінімального діаметру контактної площадки виконуємо за формулою:

(2.6)

де - діаметр отвору;

- підтравлювання діелектрика, мм;

- діаметральне значення позиційного допуску розміщення центрів отворів щодо номінального положення (табл.2.3);

- діаметральне значення позиційного допуску розміщення контактних площадок щодо номінального положення (табл.2.3).

;

при dмо1=0,8мм

;

при dмо2=0,9мм

;

при dмо3=1 мм

;

при dмо4=1,1 мм

;

Приймаємо Dпо = 1,1 мм, D1 = 1,44 мм, D2 = 1,54 мм, D3 = 1,64 мм, D4 = 1,74 мм.

Розрахунок мінімальної відстані для прокладки n-ї кількості провідників між контактними майданчиками виробляємо тільки для елементів, між виводами яких проходять друковані провідники:

l = D + t * n + S * (n + 1) + дl, (2.7)

де n - кількість провідників, n = 1;

дl - позиційний допуск розташування провідника (таблиця 2.2).

l2 = 1,54 + 0,5 + 0,5 * (1 + 1) + 0,05 = 3,09 мм

З вищенаведеного розрахунку можна зробити висновок, що відстань між двома сусідніми контактними площадками, призначеними для установки мікросхем D9 і D10, недостатня для прокладки одного провідника з урахуванням обмежень, що пред'являються до друкованого монтажу, тому контактні площадки у разі потреби можна підрізати із збереженням ширини гарантійного паска b = 0,05 мм.

На рисунку 2.2 представлені необхідні параметри для розрахунку контактних площадок КПМ.

Розрахунок контактних площадок елементів поверхневого монтажу проводиться за допомогою спеціалізованого програмного забезпечення (ПЗ) LP Calculator. Дане ПЗ, робить розрахунок контактних площадок відповідно до стандарту IPC-7351A, розробленого асоціацією IPC у співробітництві з компанією PCB Matrix Corp.

Рисунок 2.2 - Контактні площадки для КПМ

Результати розрахунку компонентів поверхневого монтажу зведені до таблиці 2.4

Таблиця 2.4 - Результати розрахунку КПМ

Найменування елемента

X, мм.

Y, мм.

G, мм.

Конденсатори VJ1206

0.22

0.23

0.22

Конденсатори B45196 та B45197

2.55

2

3.2

Резистори RC1206 J R F

1.65

1.2

1.55

Резистори RC2512 J R F

3.15

1.30

3.1

Мікросхеми ADG507AKR, AD7862AR-10, AD7945BR, MC74HC240ADW, MC74HC541ADW

0.6

2

9.3

Мікросхеми AD8512AR, MC74HC74AD

0.6

1.55

5.4

Найменування елемента

X, мм.

Y, мм.

G, мм.

Мікросхеми UC3843BVD1, HIN202IBN

0.6

1.35

4.9

Мікросхеми ATmega8515-16AI

0.6

1.15

11.7

Діоди BAS32L и BAV102

0.95

1.75

3.5

Стабілітрон BZX84-C5V6

0.65

1

2.3

Крок між контактними площадками для елементів з планарними виводами дорівнює кроку виводів відповідних елементів.

Отримані значення параметрів друкованих елементів можуть коректуватися у бік збільшення на підставі електричного розрахунку тих же елементів по постійному струму, який приведений в підрозділі 2.4.

2.3 Постановка завдання трасування друкованої плати

Визначення конкретної геометрії друкованого монтажу, що реалізує з'єднання між елементами схеми, називається трасуванням. Вихідними даними для трасування є схема електрична принципова, результати компонування елементів на ДП і конструкторсько-технологічний розрахунок зроблений раніше.

Зіставляючи схему електричну принципову і компоновку елементів, можна чітко визначитися з місцем розташування елементів на платі. Для досягнення високої якості трасування був проведений конструкторсько-технологічний розрахунок.

При трасуванні з'єднань необхідно виконувати основні вимоги ГОСТ 10317-79, ГОСТ 2.41778.

Спочатку на поверхню друкованої плати паралельно її сторонам наноситься координатна сітка. У лівому нижньому куті плати приймаємо початок координат. Цей кут називається базою. Основний крок координатної сітки 1,27 мм (стандартний для дюймової системи координат, що використовується в програмному додатку PCAD). Центри отворів і контактних площадок рекомендується розташовувати у вузлах координатної сітки. Для збільшення надійності контактних площадок при експлуатації виробу приймається округла форма.

Пряма розводка є найпростішим способом трасування. У цьому випадку траси прокладаються по найкоротшому шляху, що пов'язує ці точки. Траси проходять поруч з уже прокладеними трасами, огинаючи їх.

Метод має такі недоліки: надмірна заплутаність отриманого малюнка друкованого монтажу; низька ефективність у складних схемах; значне збільшення сумарних довжин зв'язків; наявність великої кількості перехідних отворів. Тому цей метод розведення рекомендується застосовувати для нескладних схем.

Координатний спосіб розведення передбачає розміщення провідників на різних шарах плати. Для виконання діагональних з'єднань і запобігання перетину провідників вводять перехідні отвори, які погіршують характеристики ДП. Велика кількість перехідних отворів збільшує вартість ДП, знижує надійність, ускладнює технологічний процес виготовлення ДП.

У даному випадку для зменшення довжини провідників їх розташовують у взаємно перпендикулярних площинах. Зв'язок здійснюється за допомогою металізованих перехідних отворів.

Трасування блоку виконувалася в програмі PCAD.

2.4 Розрахунок по постійному струму

Найбільш важливими електричними властивостями друкованих плат є навантажувальна здатність провідників по струму, опір провідників і діелектрична міцність основи друкованої плати. Беремо методику розрахунку з [5].

Спочатку розрахуємо потрібний перетин провідника сигнальної ланцюга:

мм2 (2.9)

де - питомий опір провідника (для провідників, отриманих методом електрохімічного нарощування = 0,05 Ом·ммІ/м);

I - струм, що видається в навантаження (для сучасних серій МС I ? 0,1A);

l - максимальна довжина провідника (приймемо l =0,1 м);

UЗ. ПУ - запас перешкодостійкості (для сучасних серій інтегральних схем UЗ. ПУ = 0,4…0,5 В).

Необхідна ширина друкованого провідника:

мм2 (2.10)

де hф - товщина фольги (hф = 0,035 мм).

Для друкованих плат третього класу точності ширина друкованого провідника повинна бути порядку 0,25 мм, тому виходячи з цього і враховуючи технологічні можливості приймаємо ширину друкованого провідника для плати t = 0,3 мм.

Ширина друкованого провідника шини живлення і землі:

(2.11)

Для UП=5 В:

мм.

Мінімальна ширина шин живлення й "землі"

Для U=5В:

,

Приймається ширина ланцюгів живлення і землі однаковою: при UП =5В - bжз=0,71 мм.

Зазор між провідниками вибирають в залежності від різниці напруг між сусідніми провідниками. Напруга пробою лакованих плат визначається електричною міцністю лакового покриття. Для друкованої плати, що розроблюється, мінімальний зазор складає 0,35 мм.

Отриманий для конкретної різниці потенціалів між провідниками зазор має бути збільшений, якщо опір витоку між провідниками перевищить допустиме значення, обчислене на основі аналізу принципової схеми. Розрізняють два види електропровідності діелектриків: поверхневу та об'ємну.

Поверхневий опір ізоляції паралельних друкованих провідників обумовлюється наявністю питомої поверхневого опору діелектрика плати:

Ом (2.12)

де lЗ - зазор між провідниками;

l - найбільша довжина спільного проходження провідників (l=100 мм).

Опір ізоляції паралельних провідників наближено обчислюється:

Ом (2.13)

де RV - об'ємний опір ізоляції між провідниками протилежних шарів двосторонньої друкованої плати (RV= 10RS).

Розраховані параметри друкованих провідників відповідають навантажувальної здатності провідників по струму, оскільки основа друкованої плати має високий опір ізоляції і високу діелектричну міцність.

2.5 Розрахунок по змінному струму

При передачі по друкованим елементам плати високочастотних імпульсних сигналів через наявність індуктивного опору провідників, взаємної індуктивності і ємності, опору витоку між провідниками сигнали спотворюються, з'являються перехресні перешкоди. Розрахунок по змінному струму дозволяє уточнити максимальну довжину одиночного провідника, максимальну довжину спільного проходження поруч розташованих провідників, зазори між провідниками.

Так як паразитна зв'язок різко зменшується при збільшенні відстані між провідниками, то найбільшу перешкоду наводять два провідника, розміщених на різних сторонах від пасивної лінії.

Допустиму довжину трьох паралельно розташованих сигнальних провідників визначають за формулою:

(2.14)

де lЕД, lИД - допустима довжина паралельно розташованих провідників при впливі тільки ємнісного паразитного зв'язку й тільки індуктивного паразитної зв'язку відповідно.

Допустима довжина паралельно розташованих сусідніх провідників при впливі тільки ємнісного паразитного зв'язку визначається за формулою:

(2.15)

де СД - допустима ємність паразитного зв'язку, що визначається перешкодостійкістю мікросхем (за найгіршим варіантом СД = 30 пФ);

СП - погонна ємність пФ / см, яка визначається за формулою:

(2.16)

де КП - коефіцієнт пропорційності (КП = 0,15);

Е1 - діелектрична проникність середовища

Для провідників, розташованих на поверхні плати:

(2.17)

де Е0 - діелектрична проникність повітря або лаку, якщо плати покриті лаком (Е0 = 2);

Е - діелектрична проникність матеріалу плати (Е = 6).

Підставляючи Е' в (2.16) отримуємо значення погонною ємності:

СП = 0,15·4 = 0,6 пФ/см

Значення СП підставляємо у формулу (2.15) і обчислюємо допустиму довжину паралельно розташованих сусідніх провідників при впливі тільки ємнісний паразитної зв'язку:

см

Допустима довжина паралельно розташованих сусідніх провідників при впливі тільки індуктивного паразитної зв'язку для плати без екрануючої площини визначають за рівнянням (2.18):

(2.18)

де UПУ - значення перешкодостійкості мікросхем (UПУ =0,4 В);

U0 - напруга логічного 0 (U0 = 0,5 В);

?I - перепад струму в ланцюзі живлення при перемиканні ІС (?I = 0,01 А);

tЗСР - середній час затримки (tЗСР = 4,75 нс);

КЗ - коефіцієнт запасу (КЗ =0,5…0,7).

Для вирішення рівняння використовується ітераційний метод Ньютона.

Введемо позначення:

; ; B = - 1; А=.

Тоді вихідне рівняння перетворюється до виду:

Ітераційна формула буде мати наступний вигляд:

Обчислення за ітераційною формулою виконують до тих пір, поки не виконається умова:

де - точність обчислень.

Одержуємо:

, B = - 1, А=

Приймаються рекомендовані значення: Z0 = 100; D = 1. Проводимо обчислення:

Z1 = (100 + 712,5) / (ln (100/0,45)) =150,36

|150,36 - 100|=50,36>1

Z2 = (150,36 + 712,5) / (ln (150,36/0,45) =148,5

|148,5-150,36|=1,86>1

Z3 = (148,5+712,5) / (ln (148,5/0,45)) =148,47

|148,47-148,5|=0,03<1

0,03<1 - умова виконується. Тоді lмд = 148,47 см.

Тоді допустима довжина трьох паралельно розміщених провідників за формулою (2.14):

.

Допустиму довжину шини землі визначимо за формулою:

(2.19)

де n - число ІС на друкованій платі, підключених до шини землі;

?І - струм перемикання ІС;

LП - погонна індуктивність шини землі (LП = 13 нГн/см);

tФ - середня тривалість фронту сигналу, яка визначається за формулою:

(2.20)

де tФ, tС - тривалість фронту і спаду імпульсу сигналу (tФ = 14 нс, tС = 14 нс).

нс.

Підставивши дані у формулу (2.19) отримаємо:

м.

Підводячи підсумки розрахунків по змінному струму можна виділити наступні вимоги до друкованих провідникам:

допустима довжина трьох паралельно розташованих сигнальних провідників - 20,63 см;

допустима довжина шини "землі" не повинна перевищувати 150 мм.

Наведені вимоги будуть враховані при компонуванні і трасуванні друкованої плати, щоб забезпечити нормальне функціонування пристрою.

2.6 Перевірочний розрахунок теплового режиму

Компоненти електронної обчислювальної апаратури функціонують в строго визначеному температурному діапазоні. Вихід температури за вказані межі може призвести до незворотних структурних змін компонентів. Температура впливає на електронні схеми, змінюючи параметри сигналів. При підвищеній температурі знижуються діелектричні властивості матеріалів, прискорюється корозія конструкційних матеріалів, контактів. При зниженій температурі тверднуть і розтріскуються гумові деталі, підвищується крихкість матеріалів. Різниця в коефіцієнтах лінійного розширення матеріалів може призвести до руйнування залитих смолами конструкцій і, як наслідок, порушення електричних з'єднань, зміни характеру посадок, ослаблення кріплення і т.п.

Нормальний температурний режим ЕОА - це такий режим, який при зміні в певних межах зовнішніх температурних впливів забезпечує зміну параметрів і характеристик конструкції, схем, компонентів, матеріалів у межах, вказаних в ТУ. Висока надійність і тривалий термін служби ЕОА будуть гарантовані, якщо температура середовища усередині ЕОА нормальна (20-25 °С) і змінюється не більше ніж на 2°/г. Забезпечення нормального теплового режиму призводить до ускладнення конструкції, збільшення габаритів і маси, введення додаткового обладнання, витрат електричної енергії. Для підтримки нормального теплового режиму використовують природне охолодження, примусове повітряне та водоповітряне охолодження, примусове охолодження з допомогою рідкого хладагента та інше.

При природному охолодженні теплонавантажені елементи охолоджуються за рахунок природної конвекції повітря, теплопровідності і випромінювання. Метод охолодження, як найпростіший, вимагає підвищеної уваги конструктора до питань раціонального компонування. При компонуванні необхідно прагнути до рівномірного розподілу потужності, що виділяється, по всьому об'єму ЕА. Компоненти та ТЕЗ з великими тепловиділеннями необхідно розташовувати у верхній частині ЕА або поблизу стінок, критичні до перегріву компоненти й ТЕЗ - у нижній частині, захищати тепловими екранами.

Примусове повітряне охолодження автономними вентиляторами і безпосередньою подачею повітря від центрального кондиціонера широко практикується в ЕА з тепловиділеннями не більше 0,5 . Недоліками повітряного охолодження є: ускладнення конструкції, підвищена запиленість, поява вібрацій в результаті роботи вентиляторів, нерівномірність розподілу охолоджуючого повітря і т.д.

Системи охолодження, що залишилися, є ще більш складними і застосовуються у складних ЕА.

Для проектованого блоку контролю та управління вибираємо природне охолодження, тому що щільність теплового потоку від охолоджуваних поверхонь не перевищує 0,05, коефіцієнт заповнення блоку дуже низький.

Тепловими розрахунками необхідно підтвердити правильність обраного способу охолодження, в іншому випадку потрібно вибрати більш ефективний спосіб охолодження. Існуючі методики теплових розрахунків електронної апаратури різноманітні, але в більшості з них теплонавантажені компоненти разом з конструктивними елементами, на які вони встановлені, моделюються умовно нагрітої зоною. Методика, за якою проводився розрахунок, має похибку не більше ±10%. Розрахунок проводився на ЕОМ за допомогою програми "TEPLO". Вихідними даними до розрахунку є:

тип використовуваного корпусу;

розміри блоку;

температура навколишнього середовища;

потужність, що розсіюється в блоці;

дані про елементи, критичних до перегріву і т.д.

Результати розрахунку наведені в додатку A. За результатами можна зробити висновок про можливість застосування в проектованому виробі природного охолодження, тому що отримані результати повністю задовольняють технічним завданням, а саме:

температура нагрітої зони, оС - 30.15;

температура повітря, оС - 30.14;

температура поверхні елементів, оС - 30.66.

2.7 Розрахунок надійності блоку

Надійність ЕА - властивість виконувати задані функції, зберігаючи експлуатаційні показники в допустимих межах протягом необхідного проміжку часу, і можливість відновлення функціонування, втраченого з тих чи інших причин.

У будь-який момент часу ЕА може знаходиться в справному або несправному стані. Якщо ЕА в даний момент часу задовольняє всім вимогам, встановленим як відносно основних параметрів, так і відносно другорядних параметрів, що характеризують зовнішній вигляд і зручність в експлуатації, то такий стан називають справним станом. Відповідно з цим визначенням несправний стан - стан ЕА, при якому вона в даний момент часу не задовольняє хоча б однієї з цих вимог.

Працездатність - стан ЕА, при якому вона в даний момент часу відповідає всім вимогам щодо основних параметрів, що характеризують нормальне протікання процесів.

Відмова - подія, що складається у повній або частковій втраті працездатності системи.

За характером зміни параметрів до моменту виникнення відмови діляться на раптові - в результаті миттєвої зміни одного або кількох параметрів елементів і поступові - в результаті поступової зміни параметрів елементів до тих пір, поки значення одного з параметрів не вийде за деякі межі, що визначають нормальну роботу елементів.

За характером усунення відмови ділять на стійкі та ті, що самоусуваються. Для усунення стійких відмов необхідна його регулювання або заміна, а самоусуваються відмови усуваються без втручання оператора.

За зовнішніми проявами відмови ділять на явні - виявляються при зовнішньому огляді і неявні - виявляються спеціальними методами контролю.

Поняття "відмова" дозволяє розглянути основні експлуатаційні властивості ЕА: безвідмовність, ремонтопридатність, довговічність, збереженість.

Безвідмовність - властивість ЕА безперервно зберігати працездатність в заданих режимах і умовах експлуатації протягом заданого інтервалу часу. Під ремонтопридатністю розуміють властивість пристрою, що полягає у пристосуванні до попередження відмов, виявлення причин їх виникнення і усунення їхніх наслідків шляхом проведення ремонтів і технічного обслуговування. Довговічність характеризує властивість виробу зберігати працездатність до настання граничного стану. Збереженість - властивість виробу зберігати значення параметрів при зберіганні та транспортуванні.

У цьому проекті оцінюється структурна надійність блоку контролю та управління. Структурна надійність ЕА - її результуюча надійність при відомій структурній схемі і відомих значеннях надійності всіх елементів, що становлять структурну схему. При цьому під елементами розуміється як інтегральні мікросхеми, резистори, конденсатори і т.п., що виконують певну функцію і включені в загальну електричну схему, так і елементи допоміжні, що не входять в структурну схему: паяні сполуки, роз'ємні, елементи кріплення та інше.

Розрахунок проводиться на ЕОМ за допомогою програми "NADEG". Вихідними даними до розрахунку є дані про типи використовуваних елементів і їх кількість.

Результати розрахунку наведені в додатку Б. За результатами (після 100000 годин роботи - середня ймовірність безвідмовної роботи 90,34%) можна зробити висновок про те, що отримані дані задовольняють вимогам ТЗ на розробку.

3. Розробка технології виготовлення блоку

3.1 Структура технології виготовлення блоку

Технологія виготовлення блоку, що розроблюється, повинна бути спрямована на максимальне використання типових технологічних процесів виготовлення і збірки, скорочення термінів виробництва, мінімізацію витрат матеріалів, забезпечення мінімальної вартості і високої якості виробу.

Відповідно до технічного аналізу виробу, у виборі типу виробництва слід орієнтуватися на серійне багатономенклатурне виробництво. Це накладає певні обмеження на вибір способів виготовлення і застосовуваного технологічного устаткування.

Технологічна схема виготовлення блоку представлена на рисунку 3.1 Усі технологічні процеси та операції при виготовленні блоку можна розбити на наступні групи операцій:

виготовлення ДП;

установка і монтаж ЕРЕ на ДП;

загальна зборка блоку.

Технологічні операції виготовлення ДП у відповідності з послідовністю їх виконання діляться на наступні три основні групи:

підготовчі операції;

основні операції;

заключні операції.

Основною операцією виготовлення ДП є отримання елементів друкованого монтажу. Для цього використовують Субтрактивний, адитивний або комбінований методи.

Технологічний процес збірки та монтажу блоку складається з наступних етапів:

підготовка НЕ;

установка ЕРЕ на ДП;

отримання контактних з'єднань виводів елементів з друкованим монтажем;

функціональний контроль монтажу і параметрів блоку;

покриття вологозахисним шаром.

Рисунок 3.1 - Технологічна схема виготовлення блоку.

3.2 Вибір методу виготовлення друкованої плати

3.2.1 Підготовчі операції

Першим етапом виготовлення ДП є механічна обробка, яка включає в себе розкрій листового матеріалу на смуги, одержання з них заготовок і виконання фіксуючих, технологічних, перехідних і монтажних отворів.

Вибір методу одержання заготовки визначається типом виробництва. Заготівлі ДП в серійному виробництві отримують штампуванням. Фіксуючі, технологічні, монтажні та перехідні отвори виконуються штампуванням або свердлінням. При штампуванні відбувається розшарування матеріалу, що ускладнює металізацію отворів. Тому для отримання отворів будемо використовувати свердлильний верстат з ЧПУ. Різання ведуть спіральними свердлами з металокерамічного твердого сплаву при оптимальній частоті обертання шпинделя в межах від 25 до 50 об / хв. Виходячи з цього, візьмемо свердлильний верстат з ЧПУ моделі Alfa Z фірми Digital Systems.

Контроль якості отворів виконується візуально за допомогою спеціальних ширококутних мікроскопів з розгортанням поверхні типу "Мікробор". Наявність отворів перевіряється на спеціальних компараторах методом сканування зображення контрольованої та еталонної плати.

Перед операціями отримання елементів друкованого монтажу виконується підготовка поверхні заготовки ДП. Підготовчі операції включають очищення вихідних матеріалів і монтажних отворів від оксидів, жирових плям, змащення, плівок та інших забруднень; активація поверхні і контроль якості підготовки.

Механічна підготовка в умовах серійного виробництва здійснюється автоматом. Автоматична хімічна та електрохімічна підготовка поверхні проводиться у ваннах із різними розчинами, з подальшим їх промиванням і сушінням.

Безпосередньо перед операцією хімічного осадження виконується декапірування, яке полягає у видаленні окисних плівок розчином соляної кислоти з наступним промиванням і сушінням.

3.2.2 Метод отримання провідного малюнка

У даний час застосовують кілька методів виготовлення ДП:

субтрактивний, при якому провідний малюнок утворюється за рахунок видалення провідного шару з ділянок поверхні, що утворюють непровідний малюнок;

адитивний, при якому провідний малюнок отримують нанесенням провідного шару заданої конфігурації на діелектричну основу плати;

комбінований, в цьому методі зроблена спроба об'єднати основні достоїнства субтрактивного і адитивного методів. З субтрактивного методу взято використання фольгованої основи як заготівки, а з адитивного - металізація отворів.

Відповідно до ГОСТ 23751-86 конструювання друкованих плат слід здійснювати з урахуванням таких методів виготовлення:

хімічного для односторонніх друкованих плат і гнучких друкованих кабелів;

комбінованого позитивного для ДДП, ГДП;

електрохімічного (полуадитивного) для ДДП;

металізації наскрізних отворів для БДП;

Всі рекомендовані методи (крім полуадитивного) є субтрактивну.

Виходячи з викладених вище рекомендацій необхідно вибрати, або електрохімічний (полуадитивний) метод, або комбінований позитивний метод.

Електрохімічний метод у даному випадку нам не підходить, тому що його застосовують для виготовлення ДДП з високою щільністю струмопровідного малюнка. У цьому методі використовується нефольгірованний діелектрик СТЕФ.1-2ЛК з обов'язковою активацією його поверхні або діелектрик з фольгою 5 мкм. З огляду на ці дані, приходимо до висновку, що даний метод значно дорожче комбінованого позитивного методу, і крім того, з-за високої щільності струмопровідного малюнка і малої товщини фольги, опір друкованих провідників буде великим, що в нашому випадку небажано.

З огляду на вищевикладене, приходимо до висновку, що в нашому випадку краще використовувати комбінований позитивний метод. Цей метод забезпечує хорошу адгезію елементів провідного малюнка до діелектричної основи і збереження електроізоляційних властивостей діелектрика, захищеного під час обробки плати в агресивних хімічних розчинах мідної фольгою.

Вихідним матеріалом для комбінованого способу служить фольгований із двох сторін діелектрик, тому що провідний малюнок отримують витравлювання міді, а металізація отворів здійснюється за допомогою хімічного міднення з подальшим нарощуванням електрохімічним шару міді.

Розрізняють комбінований негативний і комбінований позитивний методи.

Негативний. Суть методу: виборне травлення незахищених ділянок фольги, металізація отворів хіміко-гальванічним способом. Переваги - доступність механізації і автоматизації, металізація отворів, висока якість ДП. Недоліки - вплив хімічних речовин на діелектричну основу, бічне підравлення провідників, витрата травників і міді.

Позитивний. Сутність позитивного методу: хімічне осадження міді в отвори, нанесення захисного шару (негативна маска), електрохімічне осадження міді, захист провідного малюнка сплавом Sn-Pb, стравлення захисної маски.

Позитивний комбінований метод забезпечує III-й клас точності друкованого монтажу і кращі, у порівнянні з іншими методами, діелектричні властивості плат.

Травлення міді проводиться розчинами на основі хлорного заліза. Ці розчини допускають утилізацію міді з відпрацьованого травителя, а також регенерацію самого травителя. Бічне підтравлення провідників-мінімально.

З урахуванням усіх перерахованих достоїнств цей метод на даний час є основним у виробництві двосторонніх і багатошарових друкованих плат для апаратури найрізноманітнішого призначення. Метод добре відпрацьований на виробництві і є оптимальним при серійному випуску.

Основними методами для створення малюнка друкованого монтажу, є офсетний друк, сіткографія і фотодрук.

Метод офсетного друку полягає у виготовленні друкованої форми, на поверхні якої формується малюнок шару. Форма закочується валиком трафаретного фарбою, а потім офсетний циліндр переносить фарбу з форми на підготовлену поверхню основи ДП. Метод застосовується в умовах масового і великосерійного виробництва. Його недоліками є висока вартість обладнання, необхідність використання кваліфікованого обслуговуючого персоналу і трудність зміни малюнка плати.

Сіткографічний метод заснований на нанесенні спеціальної фарби на плату шляхом продавлювання її гумової лопаткою (ракелем) через сітчастий трафарет, на якому необхідний малюнок утворений осередками сітки, відкритими для продавлювання. Метод забезпечує високу продуктивність і економічний у умовах масового виробництва.

Самою високою точністю і щільністю монтажу характеризується метод фотодруку. Він полягає в тому, що на поверхню плати наносять світлочутливий фоторезист, який потім експонують через фотошаблонів і проявляють, в результаті чого утворюється заданий малюнок схеми.

При комбінованому позитивному методі для забезпечення необхідної точності, з метою підвищення технологічності та економічності необхідно використовувати метод фотодруку для отримання захисного малюнка. Для запобігання розрощення міді в процесі гальванічного осадження Необхідно використовувати сухий фоторезист товщиною 40-60 мкм. Технологія значно спрощується при використання плівкового фоторезист, який легко піддається автоматизації і забезпечує рівномірне нанесення захисного шару.

3.3 Поверхневий монтаж

3.3.1 Нанесення паяльної пасти

Паяльна паста в технології поверхневого монтажу є дуже важливим компонентом, а сама процедура нанесення і якість її виконання багато в чому позначаються на якості одержуваного електронного виробу.

Паяльна паста виконує функцію припою для SMD-компонентів, і, крім цього, допоміжну функцію - фіксацію SMD-компонентів на контактних площадках до моменту оплавлення припою. Саме тому, при виборі паяльної пасти, крім усього іншого, потрібно оцінювати і її склеювальні властивість. Будемо застосовувати паяльну пасту NC254 (вміст металу в пасті - 88,5%)

Для правильного, дозованого нанесення паяльної пасти використовуються трафаретні принтери. У даному випадку буде застосовуватися автоматичний трафаретний принтер MY500.

Необхідно відзначити, що етап нанесення паяльної пасти в процесі поверхневого монтажу відіграє значну роль. Помилки, допущені на даному етапі, в подальшому можуть призвести до браку та дефектів у виробленому електронному виробі.

3.3.2 Установка SMD компонентів

Установка SMD компонентів багато в чому є механічною процедурою. Основною її функцією - є правильне розміщення SMD-компонентів на друкованій платі. Всі SMD-компоненти повинні бути встановлені строго відповідно до спроектованої електронної схеми друкованої плати.

Оскільки більшість встановлюваних елементів SMD-компоненти, то їх встановлення здійснюється автоматично. Для установки елементів поверхневого монтажу будуть вікорістовуватіся універсальні автоматично MX-120P, продуктивність автомата за стандартом IPC9850 складає 15000 комп. / год.

3.3.3 Оплавлення паяльної пасти

Коли на друковану плату нанесена паяльна паста, встановлені та зафіксовані SMD-компоненти, виконується етап оплавлення паяльної пасти. Під час оплавлення припою на друкованих платах дуже важливо дотримання температурного режиму. Температурний режим характеризується не тільки температурою максимального нагріву, а й тим, як дана температура досягається. У процесі нагріву для ряду SMD - компонентів повинна витримуватися задана швидкість нагріву. Іншими словами, при розплавленні задається температура оплавлення і час, за який необхідно їх досягти. Більше того, процедура охолодження так само повинна витримувати такий режим. Такий підхід гарантує, що друкована плата і SMD-компоненти, що знаходяться на ній, не будуть піддані тепловим ударам, що дозволяє вберегти її від теплових ушкоджень.

Щоб забезпечити заданий температурний режим оплавлення використовуються так звані печі оплавлення припою. Печі оплавлення припою дозволяють виконати вимоги по температурному профілю в умовах групової пайки SMD - компонентів на друкованих платах.

Процедура оплавлення припою і якість її виконання багато в чому визначають якість одержуваної друкованої плати. Тому, для оплавлення паяльної пасти вибираємо систему парофазної пайки VP-800 виробництва фірми ASSCON sistemtechnik (Німеччина).

3.4 Установка навісних елементів

3.4.1 Підготовка навісних елементів до монтажу

Безпосередньо перед складанням ДП, необхідна підготовка комплектуючих елементів до монтажу. Підготовка ЕРЕ та ІС загалом включає наступні операції:

вивантаження із заводської тари;

завантаження в технологічну тару;

вхідний контроль параметрів і відбраковування;

підготовка виводів НЕ:

рихтування;

формування;

обрізка в розмір;

лудіння;

завантаження в технологічну тару для встановлення НЕ на ДП.

Необхідність вхідного контролю викликана впливом різних факторів при транспортуванні і зберіганні, які призводять до погіршення якості показників готових виробів. Витрати на проведення вхідного контролю значно менше витрат, пов'язаних з випробуванням і ремонтом зібраних плат. Вхідний контроль здійснюється вибірково.

У серійному виробництві підготовка НЕ здійснюється поопераційно з автоматичною подачею компонентів. Розміщення компонентів у технологічній тарі дозволяє підвищити продуктивність підготовки НЕ до монтажу, використовуючи автоматичне обладнання для комплексної підготовки.

Для підготовки виводів НЕ масового застосування (резистори, конденсатори, діоди і мікросхеми в корпусі DIP) будемо використовувати спеціальне технологічне обладнання. Підготовку елементів з аксіальним виводами виконуємо за допомогою автомата АКПР-1. Підготовка навісних елементів з осьовими виводами буде виконуватися вручну.

Після підготовки елементів виконується зборка блоку.

3.4.2 Напівавтоматична установка навісних елементів з використанням світломонтажного столу

В умовах серійного та багатономенклатурного виробництва при складанні типових елементів заміни (ТЕЗ) використання автоматичного обладнання викликає значні труднощі. Велика кількість номіналів ЕРЕ, топологій і розмірів ДП не дозволяє застосовувати універсальні механізми для захоплення ЕРЕ та ІС з магазинів-накопичувачів або транспортерів і встановлювати їх на ДП. Створення ж спеціалізованих автоматів при малих обсягах виробництва економічно невигідно.

Помітну частину робочого часу при роботі без цього столу монтажник витрачає на те, щоб за кресленням знайти місце розміщення ЕРЕ на ДП, знайти ЕРЕ з потрібними параметрами, визначити його орієнтацію (якщо ЕРЕ полярний), і зовсім небагато часу потрібно для того, щоб встановити його на ДП відповідно до креслення. Якщо на ДП встановлюється невелике число ЕРЕ, то монтажник дуже швидко запам'ятовує порядок розміщення ЕРЕ, і час на звернення до креслення і пошук ЕРЕ у клітинці зводиться до мінімуму навіть при великій номенклатурі вузлів на друкованій платі (ВДП) (хоча не виключена можливість помилок). Але чим складніше ВДП, тим більше часу йде у нього на звернення до креслення і пошук ЕРЕ. Зростає кількість помилок.

Тому за останні 15 - 20 років зародився і одержав розвиток новий напрямок в технології монтажу - програмована ручна збірка на світломонтажних столах ЕРЕ на ДП, які випускає більше 30 фірм США, Західної Європи та інші.

Поява програмованої збірки на СМС дозволило отримати ряд помітних переваг:

При складанні ТЕЗ не потрібно звертатися до креслення;

Виключаються помилки розміщення елементів на ДП;

Роботу може виконувати монтажник низької кваліфікації;

Значно підвищується продуктивність процесу складання.

Вручну без спеціальних засобів і прийомів дуже важко витримувати темп збірки. На світло монтажному столі може досягати 500...600 шт/г, а при сприятливих умовах - понад 1000 шт/г. Час доступу до ЕРЕ та встановлення його на ДП в кращих зразках світомонтажних столів становить 1.0...1.9 с.

Світломонтажний стіл - досить складний пристрій, в якому можуть застосовуватися різні принципи подачі ЕРЕ та зазначення місця його розміщення на ДП. Тим не менш, можна виділити основні вузли, які є в будь-якій моделі світломонтажного столу (рисунок 3.1).

Рисунок 3.1 - Структурна схема світломонтажного столу

Світломонтажний стіл подає монтажнику ЕРЕ тільки одного типономіналу (або відображає клітинку нерухомого накопичувача, де зберігаються ЕРЕ цього типономіналу) і одночасно вказує світловими засобами ділянку ДП, куди і як потрібно встановити ЕРЕ.

ДП фіксується в пристосуванні, яке може переміщатися по осях X, Y приводом. На деякому віддаленні від плати розміщується засіб вказівки посадкового місця ЕРЕ на ДП, в яке входить джерело світла, вузол зміни світлового потоку і привод. Так як при цілевказівки має значення тільки відносне переміщення світлового покажчика та ДП, то привод повинен бути тільки один - або у засобів вказівки посадкового місця (у переважній більшості випадків), або біля столу. ЕРЕ розміщується в одному або декількох накопичувачах, що мають або власний привод, які засоби індикації потрібного ЕРЕ. Всі перераховані пристрої працюють за сигналами пристрою управління, в простому випадку - кнопки або педалі. Не обов'язкові, але бажані і мають у переважній більшості установок пристрій програмування та засоби відображення інформації. Пристрій управління може через інтерфейс мати виходи на принтер, перфоратор, САПР і інші периферійні пристрої (є не у всіх установках), верхній рівень управління (КОК - керуючий обчислювальний комплекс).

3.5 Пайка контактних з'єднань. Функціональний контроль і покриття лаком

Отримання контактних з'єднань виводів елементів з друкованим монтажем здійснюється переважно паянням. Технологічний процес пайки складається з наступних операцій:

нанесення і сушка флюсу;

попередній нагрів плати і компонентів;

пайка;

обрізування виводів і очищення.

Оскільки кількість навісних елементів невелика - проводиться ручна пайка.

Після пайки на поверхні плати залишається деяка кількість флюсу та продуктів його розкладання. У зв'язку з цим передбачається очищення та відмивання змонтованої ДП за допомогою установки ELMA.

Функціональний контроль блоку виконується оператором вручну на спеціальному стенді. На стенді є світлодіоди і змінні резистори. Для функціонального контролю використовуються стандартні прилади для забезпечення необхідного напруги, а також вимірювальні пристрої для контролю вихідних сигналів. Оператор контролює блок відповідно до інструкції, яка є для нього програмою і обробляє результати контролю.

Якщо після функціонального контролю винесено позитивний результат, то плата покривається вологозахисним шаром. В якості такого покриття візьмемо кремнеорганічний лак DCA-200H, він має гарні вологозахисні властивості. Це є основним способом захисту від вологи.

Найбільш універсальним методом, що забезпечує рівномірне нанесення захисного шару на всі поверхні, в тому числі і під ІС, є занурення з подальшим центрофугіровання. Покриття лаком виконаємо на установці УЛПМ-901.

3.6. Аналіз технологічності виробу

Під технологічністю конструкції розуміють таке поєднання конструктивно-технологічних вимог, що забезпечує найбільш просте і економічне виробництво виробів при дотриманні всіх технічних та експлуатаційних умов.

Технологічність конструкції складальних одиниць визначають трудомісткістю операцій складання, можливістю ефективного використання високопродуктивного автоматизованого устаткування для збірки.

Оцінка технологічності конструкції полягає в розрахунку комплексного показника технологічності даного виробу і порівняння його з нормованим показником, встановленим для даного виду виробу. Нормований показник технологічності для серійного виробництва перебуває в межах від 0,45 до 0,75. Комплексний показник визначається на основі відносних часткових показників і коефіцієнтів їх впливу на технологічність вироби, які наведені в таблиці 3.3.

Таблиця 3.3 - Показники технологічності та коефіцієнти значущості

Порядковий номер

у ранжируваній послідовності

Показник технологічності

Коефіцієнт значущості

1

1

2

1

3

0,75

4

0,5

5

0,313

Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.