рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыБлок управления стиральной машиной

Из таблицы 2 видны следующие преимущества микроконтроллера SiLabs:

- хорошие характеристики встроенного АЦП - 17 разрядов эффективной разрешающей способности;

- большая производительность процессорного ядра C8051F350 по сравнению с аналогами от Analog Devices (ADuC847) и Texas Instruments (MSC1210);

- меньшее энергопотребление, маленький размер корпуса;

- низкая цена.

Ключевые характеристики, по которым микроконтроллеры SiLabs превосходят изделия других производителей: миниатюрные размеры корпуса микроконтроллеров, имеющих на борту АЦП и ЦАП; самая высокая производительность для 8-разрядных микроконтроллеров; ЦАП и АЦП на кристалле превосходят по своим характеристикам аналогичные микроконтроллеры других производителей, их можно сравнивать только с дискретными микросхемами.

Также немаловажным в выборе данного микроконтроллера фактором послужило большое количество доступной технической информации на русском языке.

В заключение отметим, что на сегодняшний день микроконтроллеры фирмы Silicon Laboratories:

1. Имеют наилучшие аналоговые подсистемы, включающие аналого-цифровые и цифро-аналоговые преобразователи, аналоговые мультиплексоры, программируемые усилители, источники опорного напряжения, масштабирующие узлы кодов аналого-цифровых и цифро-аналоговых преобразователей, аналоговые компараторы питания, линейные регуляторы напряжения и мониторы питания.

2. Имеют наиболее богатую цифровую периферию, включающую один или два последовательных интерфейса UART, интерфейсы SMBus (I2C), SPI, USB, CAN, параллельные аппаратные интерфейсы внешней памяти, охранный таймер WDT, от 3 до 6 каналов программируемого счетчика-массива PCA, расширенную систему прерываний (до 22 векторов прерываний), большой набор таймеров и тактовых генераторов. Некоторые модели имеют также аппаратные умножители чисел.

3. Микроконтроллеры фирмы SiLabs имеют максимальную производительность среди 8-разрядных х51-совместимых микроконтроллеров (от 25 до 100MIPS);

4. Все микроконтроллеры имеют малое энергопотребление (0.3-0.6 мА/MIPS) и низкое напряжение питания, от 2,7 до 3,6 В.

5. Все микроконтроллеры имеют широкий диапазон рабочих температур от -40?С до +85?С.

6. Микроконтроллеры выпускаются в сверхнизких малогабаритных корпусах TQFP, LQFP и MLP с размерами от 16х16 мм (TQFP-100) до 3х3 мм (MLP-11).

Таким образом, микроконтроллеры фирмы Silicon Laboratories являются идеальным выбором для широкого спектра микроконтроллерных изделий.

3.4 Насос

Сливной насос предназначен для слива воды и моющего раствора из стиральной машины или посудомоечной машины. Как правило, насос приводится в действие двигателем. В настоящее время широко используются насосы магнитного типа.

Таблица 3. Различные модели сливных насосов

Описание

Изображение

Сливной насос Фирма: Plaset Страна: Italy Сливной насос для стиральных машин 220-240Vac 50Hz 30W CI.F Mod.72710 Цена: 310 руб

Сливной насос Фирма: Plaset Страна: Italy Сливной насос для стиральных машин 220-240Vac 50Hz 34W CI.F Mod.50700 Цена: 220 руб

Сливной насос Фирма: ASKOLL Страна: Italy Сливной насос для стиральных машин 230-240Vac 50Hz 0,2A 40W CI.F Mod.M-105 Цена: 220 руб

Сливной насос Фирма: ASKOLL Страна: Italy Сливной насос для стиральных машин 230-240Vac 50Hz 0,22A 30W CI.F Mod.M-50 Цена: 350 руб

Сливной насос Фирма: ASKOLL Страна: Italy Сливной насос для стиральных машин 230Vac 50Hz 2A 30W CI.F Mod.R-050 Цена: 365 руб

Сливной насос Фирма: GRE Страна: Italy Сливной насос для стиральных машин 230V 50Hz 33W 0.22A Цена: 378 руб

Сливной насос Фирма: COPRESI Страна: Italy Сливной насос для стиральных машин 220-240V 50Hz 30W 0.2A

Сливной насос Фирма: MAINOX Сливной насос для стиральных машин 220-240V 50Hz 30W 0.2A 1.0m 20L/Min

Все приведенные в таблице 3 насосы имеют практически одинаковые характеристики, поэтому выбор обуславливается стоимостью и необходимой мощностью. Руководствуясь этими показателями, выбран сливной насос CI.F Mod.50700 фирмы Plaset (Италия).

3.5 Двигатель

Электродвигатели вращают барабан стиральной машины при всех режимах работы. Крутящий момент от шкива электродвигателя передаётся посредством приводного ремня к шкиву барабана стиральной машины. Различаются двигатели асинхронного и коллекторного типа. Асинхронные двигатели, как правило, взаимозаменяемы без переделок или с небольшими переделками (например, перепрессовка шкива). Естественно это справедливо при одинаковой или близкой мощности заменяемых двигателей.

Коллекторные двигатели используются на машинах с большой скоростью вращения барабана в режиме отжима. Преимущество коллекторных двигателей в том, что есть возможность плавного управления скоростью вращения. Регулировка осуществляется с помощью блока управления. Коллекторные двигатели, как правило, невзаимозаменяемые.

Исходя, и выше написанного выбираем асинхронный двигатель. Асинхронный электродвигатель, электрическая асинхронная машина для преобразования электрической энергии в механическую. Принцип работы асинхронного электродвигателя, основан на взаимодействии вращающегося магнитного поля, возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током. Индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля при условии, что частота вращения ротора n меньше частоты вращения поля n1 . Ротор совершает асинхронное вращение по отношению к полю.

Стоимость зарубежных двигателей как правило существенно выше отечественных, поэтому останавливаемся на отечественных асинхронных двигателях.

Асинхронные двигатели компании “ОвенКомплектАвтоматика” (рис. 4) обладают следующими преимуществами :

- высокие энергетические (КПД, соs (j) и механические (пусковой и максимальный моменты) показатели;

- виброаккустические характеристики: применение конверсионных технологий и установке малошумных подшипников обеспечивают среднее квадратическое значение виброскорости 1,8 мм/с по ГОСТ 20815 и соответствие среднего уровня звука 4 классу по ГОСТ 16372;

- степень защиты двигателей 1Р 54 по ГОСТ 17494 (по заказу 1Р55), класс изоляции Р;

- степень защиты токоввода 1Р 55;

- многообразие конструктивных, электрических и климатических исполнений, наличие температурной защиты,

- возможность изготовления на все стандартные напряжения в соответствии

с 1ЕС 38: 220/380, 230/400, 240/415, 380/660 В;

- современный дизайн и эргономичность.

Таблица 4. Технические характеристики различных моделей двигателей

Типоразмер

Мощность, кВт

Частота вращения об/мин

КПД %

Cos ?

Мпуск Мном

Mmax Мном

Iпуск Iном

Средний уровень звука, дБ(А)

Масса, кг, IM1081

АИР 80 А2

1.5

3000

82.0

0.85

2.2

2.6

6.5

65

12.4

АИР 80 В2

2.2

3000

83.0

0.87

2.1

.6

6.4

65

15.0

АИР 90 L2

3.0

3000

84.0

0.90

2.3

2.6

7.0

68

19.6

АИР 100 S2

4.0

3000

84.0

0.88

2.0

2.2

6.0

77

22.8

АИР 80 A4

1.1

1500

76.5

0.77

2.2

2.4

5.0

56

12.6

АИР 82 B4

1.5

1500

77.0

0.81

2.2

2.3

5.3

58

14.2

АИР 90 L4

2.2

1500

81.5

0.82

2.0

2.3

6.0

58

18.6

АИР 100 S4

3.0

1500

80.0

0.74

1.8

2.2

6.0

69

21.6

АИР 80 A6

0.75

1000

71.0

0.71

2.1

2.2

4.0

55

12.3

АИР 80 B6

1.1

1000

75.0

0.74

2.2

2.3

4.5

55

15.3

АИР 90 L6

1.5

1000

78.5

0.72

2.0

2.3

5.0

55

19.0

АИР 100 L6

2.2

1000

77.0

0.74

1.8

2.2

6.0

67

23.3

АИР 80 A8

0.37

750

63.5

0.59

2.0

2.3

3.5

5

12.1

АИР 80 B8

0.55

750

65.0

0.60

2.0

2.1

3.5

55

13.0

АИР 92 LA8

0.75

750

72.5

0.71

1.5

2.0

4.0

57

17.7

АИР 90 LB8

1.1

750

76.0

0.72

1.5

2.0

4.5

57

20.5

Для выполнения требуемых задач наилучшим образом подходит двигатель АИР 80 A4. Монтажное исполнение данной модели показано на рис. 5.

Рис. 5. Двигатель АИР 80 А4

3.6 Датчик блокировки двери

Для определения открытого/закрытого положения дверцы стиральной машины используется концевой датчик. Для решения данной задачи был выбран концевой датчик серии MK 12 компании Eltron (рис. 6).

Датчик с монтажными отверстиями для крепежа на болтах. Применение: - позиционные и концевые датчики, - промышленное использование

3.7 Клапан залива

Клапан залива предназначен для подачи воды от водопроводной сети. Они приводятся в действие электромагнитом. На входе клапана налива устанавливается фильтр для удаления примесей из воды.

Таблица 5. Различные модели клапанов залива

Название

Фирма

Цена, руб.

Изображение

Заливной клапан

ARISTON-INDESIT

1000

Заливной клапан

DAEWOO

1000

Заливной клапан

ARISTON-INDESIT

800

Заливной клапан

ARISTON, INDESIT

800

Заливной клапан

ARISTON, INDESIT

750

Заливной клапан

ARISTON-INDESIT

750

Заливной клапан

SAMSUNG

700

Заливной клапан

Универсальный

800

Заливной клапан

Универсальный

300

Заливной клапан

Универсальный

300

Руководствуясь данными приведенными в таблице 5, а также тем, что разрабатываемый блок управления рассчитан на стиральные машины с подводом только холодной воды, выбираем один из самых дешевых универсальных клапанов.

3.8 Замок

Электрозамки предназначены для дистанционного открывания двери подачей электрического сигнала и используются совместно с домофонами, кодовыми панелями, считывателями карточек различных типов и другими устройствами контроля доступа. Электрозамки делятся на два класса: электромагнитные и электромеханические. Электромагнитный замок удерживает дверь в закрытом состоянии за счет усилия электромагнита. Электромеханический замок имеет механический ригель, удерживающий дверь в закрытом состоянии, а управление этим ригелем осуществляется относительно маломощным соленоидом. Электрозащелки представляют собой ответную часть замка и используются совместно с обычным механическим замком. При подаче управляющего напряжения разблокируется фиксатор электрозащелки и дверь может быть открыта при выдвинутом положении ригеля механического замка. Электромагнитные замки обладают большей надежностью за счет отсутствия относительно быстро изнашиваемых механических частей.

Для данной работы наилучшим образом подходит электромагнитный замок малой мощности с питающим напряжением 5 Вольт. Стоимость и характеристики таких замков различных производителей приблизительно одинаковы.

Рисунок 7. Принципиальная электрическая схема

КД - концевой датчик блокировки двери

ДТ - датчик температуры

КЗ - клапан залива

4. Алгоритм работы

Вывод

В данном курсовом проекте разработан блок управления стиральной машиной. Данный блок управления обладает всеми необходимыми функциональными возможностями, с помощью чего осуществляется полностью автоматизированный цикл стирки белья в одном из предложенных режимов, каждый из которых реализован для двух возможных температур воды. Помимо отвечающей современным требованиям функциональности блок управления имеет конкурентоспособную стоимость и обладает высокой надежностью.

Литература

1. О. Николайчук «x51-совместимые микроконтроллеры фирмы Silicon Laboratories (Cygnal),M.,ИД СКИМЕН,2004»

2. Бродин В.Б., Шагурин М.И. Справочник. Микроконтроллеры: архитектура, программирование, интерфейс. М.: ЭКОМ 1991 г.

3. «Справочник по однокристальным микроконтроллерам КМ1816ВЕ48 и КМ1816ВЕ51» (источник - http://ofap.ulstu.ru/files/REFER_BOOK_MK48&MK51/start.htm)

4. Свободная энциклопедия «Википедия» (ресурс - http://www.wikipedia.org)

Приложение А

Код программы

Вход концевого датчика P 1.1 показывает закрыта ли дверца, если закрыта - необходима её заблокировать перед началом стирки

M_BLOCK :

MOV A, P1 // записываем в аккумулятор значение порта P1

ANL A, #10B // обнуляем ненужные биты (оставляем только сигнал концевого датчика)

JZ M_BLOCK // если дверь не закрыта (датчик разомкнут - P1.1=0) возвращаемся к началу проверки и так до тех пор пока дверца не будет зарыта

SETb P2.3 // закрыли замок на двери перед стиркой

Процедура работы таймера:

Для каждого этапа работы определена длительность:

Набор воды - 30 сек ( R2 = 10B)

Вращение барабана - 10 мин ( R2 = 100100B)

Нагрев воды - 2 мин ( R2 = 111B)

Слив воды - 30 сек ( R2 = 10B)

Отжим - 20 мин ( R2 = 1001000B)

TIMER:MOV TMOD, #1B

XRL TH0, TH0

SETB TR0

MOV A, #R2// посчитанное значение для текущего режима работы

MOV R2, #0B

MAIN:MOV R1, #0B

INC R2

SEC:INC R1

CICLE: JNB TF0, CICLE

CLR TF0

CJNE R1, #11111111B, MAIN

CJNE R2, A, END

SJMP SEC

END:RET

ACPCONF:// Конфигурирование АЦП для использования AIN0 в однопроводном режиме

MOV ADC0CF, #10000101b // Тактовая частота преобразование SAR0 = 941кГц,коэф. усиления = 16

MOV AMX0CF, #00H// 8 входов в однопроводном режиме

MOV AMX0SL, #00H// Выбор входа AIN0

MOV ADC0CN, #10001101b // Разрешение АЦП0 (режим непрерывной выборки, преобразование инициализируется по переполнению Таймера 2, данные выровнены по левому краю).

RET

После того как дверца заблокирована можно приступать к работе. Режим работы определяется битами 0 и 1 порта P2, бит 2 порта P2 определяет температуру для стирки в выбранном режиме. При проверке установленного режима в случае если он не равен нулю происходит уменьшение значения режима на единицу - в таком случае на каждом следующем шаге мы точно знаем какой режим установлен.

Список режимов работы (биты указаны по убыванию - второй, первый, нулевой) :

000 - «обычна стирка при температуре 30 градусов Цельсия»

100 - «обычна стирка при температуре 60 градусов Цельсия»

001 - «полоскание при температуре 30 градусов Цельсия»

101 - «полоскание при температуре 60 градусов Цельсия»

010 - «быстрая стирка при температуре 30 градусов Цельсия»

110 - «быстрая стирка при температуре 60 градусов Цельсия»

011 - «отжим»

MOV R0, P2 // запись режима работы в регистр R0

ANL R0, #00000011B // обнуление ненужных бит (несмотря на обнуление второго бита, отвечающего за температуру, со входа P2.2 мы всегда сможем его считать)

MOV A, R0 // переносим в аккумулятор (для команды условного перехода)

JZ M_NABOR // если режим 0 (простая стирка) переходим к стирке

DEC R0 // уменьшаем значение режима для последующего сравнения с нулём

MOV A, R0 // переносим в аккумулятор (для команды условного перехода)

JZ M_PredNabor // если режим "полоскание" переходим к установке режима "отжим" чтобы не стирать дважды

DEC R0 // уменьшаем значение режима для последующего сравнения с нулём

MOV A, R0 // переносим в аккумулятор (для команды условного перехода)

JZ M_BezOtzhima // если режим "без отжима" (10, уже равен 00) переходим

SJMP M_OTZHIM // если режим "отжим" (11, уже равен 01) переходим

M_BezOtzhima:

Mov R0, #11111111B // устанавливаем любое значение кроме выбранных режимов, для того чтобы в последствии пропустить этап «отжим»

SJMP M_NABOR // пропускаем установку режима "отжим" и переходим к стирке

M_PredNabor:

MOV R0, #00000011B // Устанавливаем режим "отжим"

Блок набора воды:

M_NABOR :

ANL P0, #0B // гасим светодиоды

SETb P0.0 // включаем светодиод "набор воды"

SETb P1.2 // включение насоса

MOV R2, #10B// запись времени работы в данном режиме

CALL TIMER // включение таймера

CLR P1.2 // по истечению заданного времени залива происходит отключение насоса

Блок нагрева воды:

ANL P0, #00000000B // гасим светодиоды

JB P2.2, M_TEMP// проверка температурного режима

MOV R3, #11110B// записали температуру 30 градусов

M_TEMP:

MOV R3, #111100B// записали температуру 60 градусов

SETb P0.1 // включем светодиод "нагрев воды"

SETb P1.0 // включаем тэн

Считываем показания датчика температуры:

CALL ACPCONF// конфигурирование ацп

M_NSTEP:

MOV A, ADCOH//старшие биты

SWAP A// обмен тетрад

ANL A, #0F0H// получили старший полубайт

MOV R5, A// временно записываем в R5

MOV A, ADC0L// считываем младший байт

SWAP A// обмен тетрад

ANL A, #0FH// получили младший полубайт

ADD A, R5// суммирование полубайт

CJNE A, R3, M_NSTEP // если требуемая температура достигнута идем дальше, если нет проверяем снова

CLR P1.0 // выключили тэн

Блок вращения барабана при стирке:

ANL P0, #0B // гасим светодиоды

SETb P0.2 // включаем светодиод "стирка"

MOV P1, #10000000B // Установка скорости оборотов (режим 000)

SETb P1.7 //включение двигателя (старший бит=1)

MOV R2, #100100B// запись времени работы в данном режиме

CALL TIMER // Включение таймера

CLR P1.7 // выключение двигателя по истечении времени

Блок выпуска воды:

ANL P0, #0B // гасим светодиоды

SETb P0.3 // включем светодиод "выпуск воды"

SETb P1.3 // открытие клапана

MOV R2, #10B// запись времени работы в данном режиме

CALL TIMER // вызываем процедуру работы таймера

CLR P1.3 // закрытие клапана по истечении времени

CJNE R0, #0B, M_PredNabor // если первый режим (первые два бита порта P2 равны нулю) то переход

CJNE R0, #11111111B, M_END // если режим «быстрая стирка» то переход к окончанию работы

Блок отжима (проходит во всех режимах работы кроме режима «быстрой стирки»):

M_OTZHIM:

ANL P0, #0B // гасим светодиоды

SETb P0.4 // включаем светодиод "отжим"

MOV A, P2 // передача скорости двигателя в аккумулятор

ANL A, #01110000B // обнуление ненужных битов (оставляем только те, которые используются двигателем)

MOV P2, A

SETb P1.7 // включение двигателя

MOV R2, #1001000B// запись времени работы в данном режиме

CALL TIMER // включение таймера

CLR P1.7 // выключение двигателя по истечении времени

Блок окончания работы :

M_END:

ANL P0, #0B // гасим светодиоды

SETb P0.5 // включаем светодиод "конец работы"

CLR P2.3 // открыли замок

Страницы: 1, 2




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.