рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыВагова обробка сигналів і зображень у радіотехнічних системах на основі атомарних функцій

,(6)

де

- КК, що обумовлений просторовим ослабленням завади й залежить лише від геометричного розташування ділянки, яка відбиває завадові сигнали від поверхні в напрямку, що відрізняється від напрямку максимуму ДС;

- коефіцієнт, що дорівнює відношенню ефективної площі розсіювання (ЕПР) цілі до ЕПР ділянки поверхні , яка взаємодіє із ЗС;

- коефіцієнт, обернено пропорційний значенню загасання радіохвиль у середовищі, яке зондується (дорівнює одиниці при селекції повітряних цілей);

та - відповідно нормовані ДС і ФН РСА; - кути нахилу парціального променя ДС; - ефективна площа антени.

У підрозділі наведені результати розрахунків КК і моделювання процесу ППК при використанні класичних і розроблених ВФ як обвідних зондуючого і траєкторного сигналів, а також розподілення поля реальної антени.

Використані функції розподілення поля в апертурі антени у вигляді розробленого вагового вікна на основі АФ і Блекмана-Херріса (нового вікна Кравченка- Блекмана-Херріса), а обвідної ЗС - на основі АФ і функції Гаусса (нового вікна Кравченка-Гаусса). По осі абсцис відкладено відстань у метрах від максимуму парціального променя ДС. Із рис. 7,а випливає, що пасивна завада, яка проникає у РЛЗ з відстані 5 м від максимуму парціального променя ДС, ослаблена приблизно на 50 дБ у відношенні до сигналу, отриманого з напрямку максимуму цього променя при польоті РЛС на висоті 150 м і застосуванні простого (без внутрішньоімпульсної модуляції) сигналу. При тих же вихідних даних, але у разі використання сигналу з лінійною модуляцією частоти величина ослаблення завади зростає майже до -73 дБ.

За результатами моделювання створені таблиці, які дозволяють у першому наближенні оцінити ступінь селекції підповерхневого середовища (на глибині d) або повітряного об'єкта (на висоті h) при заданих висотах польоту носія РЛС Н, коефіцієнті запасу та відношеннях ЕПР .

Як модель поверхні, що зондується, вибрано модель із трьох плоских шарів без урахування перевідбиття радіохвиль між ними. Таке спрощення не змінює суті моделювання і дозволяє визначати основні закономірності роботи РСА при фокусуванні на підповерхневий шар ґрунту. На рис. 8 зверху вниз покзані: тестове зображення ідеальної ЕПР підповерхневого шару, сформоване первинне РЛЗ та бінаризоване зображення після фільтрації первинного РЛЗ лінійним фільтром на основі АФ .

Четвертий розділ присвячений впровадженню нових ВФ у задачі аналізу сигналів і зображень, а також підвищенню якісних характеристик систем захисту від пасивних завад різного походження за допомогою використання АФ у системах селекції рухомих цілей.

Так, гармонічний аналіз сигналів із великим діапазоном амплітуд і близьких за частотою (наприклад, та ) потребує для зменшення ефекту розтікання спектра використання вагових вікон, відмінних від рівномірного.

Аналіз результатів моделювання виявлення гармонічних складових за допомогою перетворення Фур'є показав, що класичні вагові вікна не забезпечують необхідних якісних показників визначення і оцінювання частоти і амплітуди слабкого сигналу. Розроблені ВФ на основі АФ і класичних функцій Гаусса та Хеммінга дозволяють зменшити рівень артефактів, які формуються шляхом синфазного складання бічних пелюсток за від'ємними та позитивними частотами, відповідно на 3 та 7 дБ з одночасним збільшенням провалу між спектральними піками до 15 дБ. Результати гармонічного аналізу з використанням нових вагових вікон показані на рис. 9 і 10. Зліва на кожному з рисунків - результат аналізу першого сигналу, справа - другого. По осі ординат відкладено амплітуду у децибелах.

Використання нових ВФ у задачах оцінювання випадкових процесів на виході РТС із широкою та вузькою смугами пропускання із застосуванням методів Бартлетта і Уелча (з 50%-м перекриттям сегментів), а також алгоритму згладжування показав, що у даних задачах доцільно використовувати відповідно сім'ї АФ при п = 3…10 і т = 1,2 та при а = 7…10.

Далі у розділі розглянуті алгоритми лінійної та нелінійної фільтрації з використанням розроблених ВФ. На основі проведеного моделювання обґрунтовано доцільність застосування вікон на основі АФ сім'ї як лінійних фільтрів, а також нового вікна Кравченка-Блекмана-Херріса в альфа-урізаному фільтрі. Підвищення результатів лінійної фільтрації за сумарним критерієм, який враховує СМВ, СКВ і СН становить мінімум 7%, а для альфа-урізаного фільтра - не менше 4,5%.

Проведено аналіз робочих характеристик системи захисту від пасивних завад, виявлено вплив ВФ на ці характеристики. Застосуванням нових ВФ забезпечено зниження необхідного відношення інтенсивності сигналу до потужності завад при заданій імовірності правильного виявлення (таблиця 1). У таблиці 1 вказані зниження (у децибелах) для ймовірності правильного виявлення, що становить 0,5 та одній із штатних вобуляцій періодів зондування імпульсів у пачці. При отриманні даних вважалося, що завада має нормальний розподіл із кореляційною функцією у вигляді функції Гаусса.

Таблиця 1

Зниження (у дБ) необхідної інтенсивності сигналу для заданої ймовірності правильного виявлення (0,5) при різних потужностях завад

Відносна потужність завади, дБ

10

20

30

40

50

60

Використання штатного вікна

(потужність сигналу, дБ)

0,71

0,91

2,52

8,56

17,8

27,8

Використання нового вікна (потужність сигналу, дБ)

0,713

0,84

1,88

6,672

15,5

25,2

Зниження, дБ, відношення сигнал/завада

-0,003

0,06

0,64

1,888

2,3

2,6

На рис. 11 показано залежність правильного визначення швидкісних характеристик об'єкта при відносній потужності завади 40 дБ та інтенсивності сигналу 7,5 дБ. По осі абсцис відкладені відліки радіальної швидкості (одному відліку відповідає 5,688 м/с, тобто уся шкала займає проміжок від 0 до 1138 м/с). Чорною суцільною лінією показано швидкісні характеристики РЛС при використанні нового вікна, штриховою - штатного вікна.

ВИСНОВКИ

Основним науковим результатом дисертаційної роботи є підвищення якості просторово-часової обробки сигналів і випадкових процесів у РТС, зокрема в системах картографування поверхонь із синтезом апертури, трикоординатних РЛС підповерхневого зондування і селекції повітряних цілей, захисту від пасивних завад різноманітного походження шляхом впровадження у відповідні алгоритми нових ВФ, сконструйованих на основі АФ.

У ході дисертаційної роботи були отримані такі наукові та практичні результати й зроблені висновки:

1. На основі проведеного аналізу ВФ і напрямків їхнього застосування виявлено, що сьогодні, незважаючи на досить широке їхнє використання в різних галузях науки й техніки, практично відсутня узагальнена теорія вагової обробки. Створення такої теорії - задача складна й потребує глибокого аналізу, як самих ВФ, так і алгоритмів в яких їх застосовують. У дисертаційній роботі проведено систематизацію вікон і визначено їхнє місце в алгоритмах формування і цифрової обробки сигналів і зображень РТС.

2. Запропоновано формувати нові ВФ на основі АФ шляхом попереднього введення порога й дробових ступенів в АФ з наступним застосуванням математичних операцій прямого добутку або згортки із класичними ВФ. Сформовано нові ВФ.

3. Показано, що вагова обробка обвідної зондуючого і траєкторного сигналів та АР поля в апертурі реальної антени у класичних РСА з використанням нових ВФ дозволяє збільшити контраст РЛЗ і знизити рівень ефекту Гіббса, який виявляється на контрастних ділянках зображення.

4. Набув подальшого удосконалення модифікований метод синтезування апертури антени шляхом введення ВФ в алгоритми просторово-часової обробки сигналів. У результаті введення вагової обробки вдалося знизити високий РБП модифікованої ФН РСА.

За результатами моделювання обґрунтовано доцільність вагової обробки ЗС за допомогою ВФ , а АР - ВФ .

5. У роботі обґрунтована можливість формування зображень із високою роздільною здатністю за дальністю, азимутом і кутом місця поверхневого й підповерхневих середовищ, у тому числі й середовищ із великою проникною здатністю. На основі аналізу даних, отриманих при проведенні моделювання, обґрунтовано доцільність застосування нових ВФ в алгоритмах просторово-часової обробки сигналів трикоординатних РСА. При цьому використання ВФ як обвідної ЗС забезпечує зниження РБП ФН РСА до -47дБ (з -13дБ при використанні рівномірної вагової функції), а для корекції ДН в азимутальному напрямку та у площині, поперечній до напрямку руху носія РЛС, ВФ і знижують РБП відповідно до -48 і -100 дБ.

У роботі показано, що запропоновані ВФ дозволяють підвищити якість селекції підповерхневих середовищ і можуть бути використані при вирішенні задач виділення повітряних цілей на фоні пасивних завад, зокрема відбиттів від підстильної поверхні. При цьому для цілей, які знаходяться на висотах в десятки метрів, значення КК може сягати ста і більше децибелів.

6. Застосування розроблених вагових функцій забезпечило вирішення задачі ГА сигналів з більш високими показниками якості. У результаті проведеного моделювання виявлені нові ВФ, які підвищують ймовірність виявлення слабких сигналів на фоні сильних гармонічних складових, близьких за частотою. До числа таких функцій віднесені розроблені вікна на основі АФ і функцій Гаусса і Хеммінга.

7. Обґрунтована доцільність застосування АФ сім'ї , а саме і , у задачах непараметричного оцінювання випадкових процесів. Їх використання дозволяє зменшити дисперсію згладженої оцінки в 1,3 раза у відношенні до вікна Ханна, яке було запропоноване Уелчем.

8. Запропоновано удосконалення лінійних фільтрів шляхом використання АФ сім'ї на п'єдесталі. Їх застосування дозволяє підвищити як кількісні показники, так і візуальне сприйняття відфільтрованих зображень.

Удосконалено нелінійний альфа-урізаний фільтр за допомогою введення в його алгоритм розробленої вагової функції . Найменше підвищення якості зображення при порівнянні з використанням інших функцій за сумарним критерієм становить 4,5%.

9. Підвищені якісні показники системи захисту від пасивних завад, а саме зниженні необхідні відношення інтенсивностей сигналів до потужностей завад при заданій ймовірності правильного виявлення та збільшенні ймовірності визначення швидкісних характеристик об'єктів у широкому діапазоні швидкостей та інтенсивностей сигналу.

СПИСОК ПУБЛІКАЦІЙ ЗА ТЕМОЮ ДИСЕРТАЦІЇ

1. Блєднов В.І., Павліков В.В. Аналіз характеристик синтезованих осьових антенних решіток при повздовжньому синтезі // Радіоелектронні і комп'ютерні системи.- 2005. - №1(9) - С. 11-14.

2. Волосюк В.К., Бледнов В.И., Бабенко А.И., Павликов В.В. Применение атомарных функций в задачах весовой обработки радиолокационных сигналов // Зб. наук. праць Харківського університету Повітряних Сил. - Випуск 1(7). - 2006. - С. 46-52.

3. Волосюк В.К., Бледнов В.И., Бабенко А.И., Павликов В.В. Оценка величины смещения и дисперсии частоты радиолокационного сигнала с шумом, взвешенного новыми окнами Кравченко // Радіоелектронні і комп'ютерні системи. - 2006. - №2(14). - С.15-23.

4. Волосюк В.К., Павликов В.В., Севостьянов Ю.В. Использование новых окон Кравченко при гармоническом анализе методом дискретного преобразования Фурье // Радіоелектронні і комп'ютерні системи. - 2007. - №1(20). - С.5-11.

5. Павликов В.В. Весовые окна на основе атомарных функций в задачах формирования радиолокационных изображений поверхностных и подповерхностных изображений зондируемых сред // Системи обробки інформації. - 2007. - №2 (60). - С. 63-66.

6. Pavlikov V.V. Application of Kravchenko windows in problems of formation of the radar subsurface layers images by the onboard radar of subsurface sensing // The sixth international Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves and workshop on terahertz technologies. Kharkov, Ukraine, June 25-30, 2007. - Р. 938-940.

7. Волосюк В.К., Павликов В.В. Окна Кравченко в задачах весовой обработки зашумленных радиолокационных сигналов // Труды российского научно-технического общества радиотехники, электроники и связи им. А.С. Попова. Сер.: Научная сессия, посвященная Дню радио. Вып.: LXI. Москва - 2006. - С. 37-39.

8. Волосюк В.К., Павликов В.В., Кравченко В.Ф., Кутуза Б.Г. Оптимальные алгоритмы обработки радиолокационных изображений поверхностных и подповерхностных слоев с использованием весовой обработки сигналов многолучевых радиолокационных станций с синтезированием апертуры // Труды российского научно-технического общества радиотехники, электроники и связи им. А.С. Попова. Сер.: Цифровая обработка сигналов и ее применение. Вып.к: IX. Москва - 2007. - С. 358-361.

9. Volosyk V.K., Pavlikov V.V., Sevostyanov J.V. Spectrum analysis of radar signals with usage of Kravchenko windows. The sixth international Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves and workshop on terahertz technologies. Kharkov, Ukraine, June 25-30, 2007. - Р. 941-943.

10. Волосюк В.К., Павликов В.В. Моделирование радиолокационных изображений поверхности, их обработка с помощью линейных и нелинейных фильтров на основе атомарных функций // Труды российского научно-технического общества радиотехники, электроники и связи им. А.С. Попова. Сер: Научная сессия, посвященная Дню радио. Вып.: LXII. Москва - 2007. - С. 291-293.

11. Blednov V.I., Pavlikov V.V., Jakuschenko I. Filtration of the radar images by filters with weighting coefficients of classical and new Kravchenko windows // The sixth international Kharkov symposium on physics and engineering of microwaves, millimeter and submillimeter waves and workshop on terahertz technologies. Kharkov, Ukraine, June 25-30, 2007. - Р. 986-988.

12. Kravchenko V.F., Volosyuk V.K. and Pavlikov V.V. The family of atomic functions and digital signal processing in synthetic aperture radar // The sixth international conference on antenna theory and techniques. Sevastopol, Ukraine, September 17-21, 2007. - Р. 20-25.

13. Блєднов В.І., Павліков В.В. Особливості осьових антенних решіток літальних апаратів // Перша науково-технічна конференція Харківського університету Повітряних Сил. Харків, 16-17 лютого 2005 р. - Харків, 2005 - С.392.

14. Волосюк В.К., Бледнов В.И., Бабенко А.И., Мисик Ф.Ф., Павликов В.В. Применение атомарных функций в задачах весовой обработки радиолокационных сигналов // Друга науково-технічна конференція Харківського університету Повітряних Сил імені Івана Кожедуба. Харків, 15-16 лютого 2006 р. - Харків, 2006. - С. 148.

15. Павликов В.В., Богородицкий Е.А. Новые окна в задачах гармонического анализа на основе комбинации классических окон и атомарных функций // Міжнародна науково-технічна конференція “Інтегровані комп'ютерні технології в машинобудуванні”. Харків, 16-17 листопада 2006 р. - Харків, 2006. - С. 312.

16. Севостьянов Ю.В., Павликов В.В., Чечоткин Д.В. Обнаружение воздушных целей авиационными бортовыми радиолокационными системами на основе продольного синтеза апертуры // Третя наукова конференція Харківського університету Повітряних Сил імені Івана Кожедуба. Харків, 28-29 березня 2007 р. - Харків, 2007. - С. 112-113.

17. Волосюк В.К., Павликов В.В., Круть А.Н. Обработка радиолокационных изображений с помощью частотных фильтров на основе атомарных функций // Міжнародна науково-технічна конференція “Інтегровані комп'ютерні технології в машинобудуванні”. Харків, 14-15 листопада 2007 р. - Харків, 2007. - С. 207.

Анотація

Павліков В.В. Вагова обробка сигналів і зображень у радіотехнічних системах на основі атомарних функцій. - Рукопис.

Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.12.17 - радіотехнічні та телевізійні системи. - Національний аерокосмічний університет ім. М.Є. Жуковського „Харківський авіаційний інститут”, Харків, 2008.

Визначені напрямки застосування вагових функцій (вікон) в алгоритмах радіотехнічних систем і досліджено їх вплив на якісні показники цих систем. Розроблені нові вікна на основі атомарних функцій. У дисертаційній роботі підвищені якісні показники спектрального аналізу сигналів і оцінювання випадкових процесів, цифрової обробки сигналів і зображень із застосуванням методів лінійної й нелінійної фільтрації, алгоритмів обробки просторово-часових сигналів і зображень сучасних радіолокаційних станцій із синтезуванням апертури при вирішенні комплексних задач поверхневого й підповерхневого картографування та систем міжперіодної обробки сигналів на фоні пасивних завад шляхом впровадження в зазначені алгоритми розроблених у дисертаційній роботі вагових функцій з використанням атомарних функцій.

Ключові слова: атомарні функції, вагові функції, гармонічний аналіз, підповерхневе картографування, радіолокаційне зображення.

АННОТАЦИЯ

Павликов В.В. Весовая обработка сигналов и изображений в радиотехнических системах на основе атомарных функций. - Рукопись.

Диссертация на соискание ученой степени кандидата технических наук по специальности 05.12.17 - радиотехнические и телевизионные системы. - Национальный аэрокосмический университет им. Н.Е. Жуковского "Харьковский авиационный институт", Харьков, 2008.

Разработан обобщенный алгоритм формирования весовых функций (ВФ) (окон) с использованием атомарных функций (АФ), на основе которого сформированы новые окна. Определено, что, несмотря на широкое применение ВФ как в различных научных расчетах, так и в технических приложениях, существуют сложности с четкими рекомендациями по их выбору для различных приложений. Это обусловлено, прежде всего, сложностью (а часто и невозможностью) решения оптимизационных задач синтеза новых ВФ с заданными характеристиками. Поэтому на этапе разработки системы используют классические ВФ, которые в некоторой степени обеспечивают требуемые параметры качества таких систем. Так как указанные окна в большинстве не являются оптимальными, разработчики иногда добиваются повышения качественных показателей радиотехнических систем (РТС) путем подгонки коэффициентов окна с последующим анализом качества этих систем. Такой путь не всегда эффективен и сопряжен со значительными временными затратами. В работе предложено использование новых ВФ на основе АФ, которые обладают улучшенными характеристиками и способны повысить качественные показатели РТС.

Проанализированы направления применения ВФ в алгоритмах РТС и проведено исследование влияния окон на качественные показатели этих систем, к которым отнесены: алгоритмы пространственно-временной обработки сигналов и формирования заданных диаграмм направленностей РТС, методы спектрального анализа сигналов, алгоритмы формирования и цифровой обработки сигналов и изображений, в том числе и радиолокационных изображений.

Получил дальнейшее усовершенствование модифицированный метод синтезирования апертуры антенны путем введения ВФ в алгоритмы пространственно-временной обработки сигналов. В результате введения весовой обработки удалось повысить качественные показатели формирования радиолокационных изображений подстилающих поверхностей благодаря снижению уровня боковых лепестков (УБЛ) модифицированной функции неопределенности в радиолокационной системе с синтезированием апертуры (РСА).

По результатам моделирования обоснована целесообразность весовой обработки зондирующего сигнала (ЗС) с помощью разработанного окна , а амплитудного распределения - .

В рамках актуальных задач для Украины показана возможность формирования радиолокационных изображений с высокой разрешающей способностью по дальности, азимуту и углу места поверхностного и ограниченного числа подповерхностных сред, к числу которых принадлежат и пресные ледовые покровы материка. Обоснованна целесообразность применения новых весовых окон в алгоритмах пространственно-временной обработки сигналов трехкоординатных РСА. При этом использование новой ВФ в качестве огибающей ЗС обеспечивает снижение УБЛ функции неопределенности РСА до -47 дБ (с -13 дБ, получаемых при использовании равномерной весовой функции), а для коррекции диаграммы направленности в азимутальном направлении и в плоскости, поперечной к направлению движения носителя РТС, применение ВФ и позволяет снизить УБЛ соответственно до -48 и -100 дБ.

Повышены качественные показатели гармонического анализа сигналов с большим динамическим диапазоном амплитуд, близких по частоте. Обоснована целесообразность применения в данных задачах новых ВФ на основе АФ и окон Гаусса и Хэмминга. Исследовано влияние новых окон на оценивание случайных процессов на выходах широкополосных и узкополосных РТС. Показано, что использование АФ семейства , а именно и , позволяет уменьшить дисперсию сглаженной оценки в 1,3 раза по отношению к использованию ВФ Ханна, предложенного Уэлчем. Показано, что применение АФ семейства (а=3…10) при сглаживании узкополосных процессов дает возможность получать оценки, наиболее близкие к эталонным.

Усовершенствованы методы цифровой обработки сигналов и изображений с применением методов линейной и нелинейной фильтрации благодаря внедрению в указанные алгоритмы разработанных в диссертационной работе ВФ на основе АФ.

Повышены качественные показатели систем защиты от пассивных помех.

Ключевые слова: атомарные функции (АФ), весовые функции (ВФ), гармонический анализ, подповерхностное картографирование, радиолокационное изображение.

SUMMARY

Pavlikov V.V. Weight signal and image processing in radio systems in terms of atomic functions. - Manuscript.

Thesis for the degree of Candidate of Technical Science in specialty 05.12.17 -Radio and television systems. - National Aerospace University named after N.Ye. Zhukovsky “Kharkov Aviation Institute”, Kharkov, 2008.

The styles of the weighting windows using in radio systems algorithms are determined and impact of the weighting windows on qualitative coefficients of its systems is investigated. New weighting windows having improved characteristics are developed in terms of atomic functions. In the dissertation are perfected qualitative coefficients of signals spectrum analysis and stochastic processes evaluating, digital signal and image processing because of using linear and nonlinear filtration methods, space-time processing algorithms of signals and patterns of modern synthetic aperture radars when the surface and subsurface mapping overall tasks are decided, and inter-period processing signal systems on background of passive interferences due to embedding the weighting windows in terms of atomic functions on above mentioned algorithms in the dissertation.

Key words: atomic functions, weighting windows, frequency analysis, subsurface mapping, radar image.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.