рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыВариконды и их применение

Вариконды и их применение

1

Содержание

Введение

1. Основные свойства

1.1 Основные свойства сегнетокерамики ВК

1.2 Частотные характеристики

1.3 Конструкции варикондов

2. Изготовление керамических конденсаторов

2.1 Изготовление конденсаторных элементов

2.2 Электроды для конденсаторов

3. Основные применения

3.1 Возможные применения импульсных схем, управляемых с помощью варикондов

3.2 Возможности построения кодирующих устройств -- шифраторов

Вывод

Литература

Введение

Развитие ряда областей современной техники в значительной степени определяется успехами электроники, основанными на научных достижениях физики твердого тела. Одно из актуальных направлений электроники -- миниатюризация аппаратуры. Наряду с уменьшением габаритов аппаратуры ставится задача достижения высокой надежности ее действия при различных условиях эксплуатации.

В последние годы наряду с полупроводниковыми и металлическими активными элементами применяются диэлектрические активные элементы -- вариконды. Варикондами называют сегнетокерамические конденсаторы с резко выраженными нелинейными зависимостями поляризации и диэлектрической проницаемости от напряженности электрического поля. Вариконды относятся к сегнетоэлектрикам и обладают свойством спонтанной, т. е. самопроизвольной электрической поляризации, существующей независимо от внешнего поля в некотором интервале температур. Сегнетоэлектрики получили на звание от сегнетовой соли, у которой в интервале температур от --18 до +24°С были впервые обнаружены аномальные диэлектрические свойства, получившие название сегнетоэлектрических.

Интенсивное использование сегнетоэлектриков в технике началось после открытия Б.М.Вулом сегнетоэлектрических свойств у керамического титаната бария BaTiO3. Вскоре после этого под руководством Г.А. Смоленского было открыто большое число новых керамических сегнетоэлектриков как простого, так и сложного состава.

В настоящее время известно несколько сотен сегнетоэлектриков, многие из которых могут изготовляться в виде поликристаллических материалов по керамической технологии. Наиболее изученным является титанат бария, поэтому для описания свойств новых сегнетокерамических материалов проводят их сравнение со свойствами BaTiO3.

В научной литературе многих зарубежных стран сегнетоэлектрики называются также и ферроэлектриками. Это обусловлено формальным сходством явлений сегнетоэлектричества (ферроэлектричества) и ферромагнетизма.

1. Основные свойства

1.1 Основные свойства сегнетокерамики ВК

В настоящее время для изготовления варикондов используются семь видов нелинейной сегнетокерамики, отличающихся друг от друга величиной диэлектрической проницаемости и поляризации, степенью нелинейности ?(E~), температурой Кюри и другими параметрами.

Эти материалы получили обозначение соответственно ВК-1, ВК-2,...,ВК-7. По составу и технологическим особенностям они не одинаковы .

Первые шесть материалов ВК-1,..., ВК-6 в нормальных условиях являются сегнетоэлектриками,и их нелинейные свойства оцениваются по характеру зависимости поляризации и диэлектрической проницаемости от напряженности переменного электрического поля. Материал ВК-7 является параэлектриком и рассматривается отдельно. Для всех материалов при увеличении поля поляризация возрастает и достигает насыщения (рис.1.1). Кривая P(E~) круто поднимается вверх для материалов ВК-3 и ВК-5, наиболее полого на начальном участке -- для материала ВК-6. Кривые для остальных материалов занимают промежуточное положение. Резкое возрастание поляризации материала ВК-6 начинается при более высоких полях, чем для материалов ВК-1,...,ВК-5.

Зависимости диэлектрической проницаемости от напряженности поля для шести видов нелинейной керамики и титаната бария приведены на рис.1.2. При увеличении поля, в соответствии с законом изменения поляризации Р(E~), диэлектрическая проницаемость растет, достигает максимума и уменьшается. Наиболее резкое и большое изменение ?(E~) имеет материал ВК-5, наиболее слабое -- титанат бария.

Степень нелинейности оценивается по изменению диэлектрической проницаемости материала (или емкости вариконда) под воздействием постоянного и переменного напряжений, приложенных к образцам.

Поляризация сегнетоэлектриков (полная, остаточная, спонтанная, индуцированная), коэрцитивное поле Ec, поле насыщения, коэффициенты прямоугольности, гистерезисные потери определяются из осциллограмм петель гистерезиса, снятых при разных значениях напряженности поля. В некоторых случаях такими осциллограммами полнее всего можно охарактеризовать нелинейные свойства варикондов и судить о процессах переполяризации в веществе при том или ином значении электрического поля.

По значению температуры Кюри нелинейные сегнетокерамические материалы ВК-1?ВК-7 можно разделить на пять групп.

К первой группе относятся три материала ВК-1, ВК-2 и ВК-5 с температурой Кюри TС =75±10°С; ко второй группе --материал ВК-3, для него TС =25±10°С; к третьей группе -- материал ВК-4, TС =105± 10°С, к четвертой группе -- материал ВК-6, TС =200±20°С и, наконец, к пятой группе -- материал ВК-7, TС <20°С.

Рассмотрим основные свойства каждого из этих семи материалов.

Материал ВК-1.Он использовался только для создания первых типов варикондов, уступает по нелинейным свойствам новому материалу ВК-2 и не имеет перед ним никаких преимуществ по электрическим параметрам. Отличаясь простой технологией изготовления, ВК-1 может использоваться лишь для варикондов с невысокими нелинейными свойствами. Коэффициент нелинейности K~?4.

Материал ВК-2.Начальные значения диэлектрической проницаемости ?нач., измеренные в слабом поле при Е = 5 в/мм, для материалов ВК-1 и ВК-2 примерно одинаковы и составляют величину порядка 2200--3000.

Максимальные значения ? этих наиболее распространенных материалов (рис.1.3) достигаются при сравнительно низкой напряженности электрического поля: для ВК-1 величина Eмакс. составляет 150--200 в/мм, для ВК-2 -- 120--150 в/мм.

Точка Кюри материалов ВК-2 и ВК-1 соответствует одной и той же температуре -- примерно 75°С. При воздействии слабого электрического поля (E~?2?5 в/мм) с частотой 50--106 гц кривые температурной зависимости ? этих материалов различаются мало, тогда как кривые зависимости tg б от температуры для материала ВК-2 лежат значительно ниже, чем для материала ВК-1 (рис.1.4). При повышенных напряженностях поля значения tgб материалов ВК-1, ВК-2 и титаната бария почти одинаковы, их максимальные значения равны 0,3--0,4.

Зависимость диэлектрической проницаемости материала ВК-2 от напряженности электрического поля, как и материала ВК-1,резко выражена в широком интервале температур -- от точки Кюри до весьма низких температур (измерения производились до -195°С).

Коэффициент нелинейности K~ материала ВК-2 при отрицательных температурах много выше, чем при положительных. Это происходит потому, что при понижении температуры значение ?нач этого материала в случае воздействия слабой напряженности поля снижается значительно более резко, чем при воздействии повышенной напряженности поля, и разница между начальными и максимальными значениями ? в области отрицательных температур больше, чем в области положительных температур. При снижении температуры напряженность поля, при которой значение ? достигает максимума, увеличивается (рис.1.5).

Во всем исследованном интервале температур значения коэффициента нелинейности K~ материала ВК-2 оказались более высокими, чем материала ВК-1.

Вариконды изготовляются в виде дисков толщиной 0,4--0,8 мм. В ряде случаев вариконды применяются собранными в блоки. При рабочем напряжении 100 в напряженность поля у таких варикондов оказывается уже достаточной, чтобы вызвать возрастание их емкости до максимума. При увеличении толщины дисков рабочее напряжение варикондов может соответственно увеличиваться.

В особых случаях вариконды из этого материала изготовляются па более высокие рабочие напряжения (до 300--500 в и выше).

Вариконды из материала ВК-2 являются наиболее распространенными; они выпускаются в серийном производстве.

Материал ВК-3. Его температура Кюри TС = 25±10°С. Отличается он высокими значениями диэлектрической проницаемости и коэффициента K? в области слабых переменных полей и при комнатной температуре. Вариконды из материала ВК-3 специально предназначаются для работы при температуре, близкой к комнатной, или требуют термостатирования. В этом случае используется главным образом резко выраженная реверсивная зависимость диэлектрической проницаемости от постоянного напряжения при воздействии слабых сигналов переменного напряжения.

Изделия из этого .материала характеризуются высокой удельной емкостью в слабых полях. Вместе с тем, изготовление элементов с низким номинальным значением емкости (менее 100 пф) затруднено.

Величина диэлектрической проницаемости в слабом поле при комнатной температуре составляет 10000 -- 20000, a tgб ?0,05 при комнатной температуре.

Нелинейные характеристики материала ВК-3 измеряются при комнатной температуре. При увеличении напряженности переменного поля е материала резко возрастает и уже при 50--100 в/мм достигает максимального значения ?макс = 20000--30000, после чего она снижается (рис.1.6). Для отдельных специальных образцов вмакс может быть значительно больше и составлять 60 000--80 000, коэффициент нелинейности K~ для них невелик и составляет 2--6, это связано с тем, что начальные значения ? уже достаточно высоки.

Нелинейность сегнетокерамики ВК-3 оценивается главным образом по реверсивной характеристике диэлектрической проницаемости, снятой в слабом переменном поле порядка 2--5 в/мм. Для ?нач напряженность постоянного электрического поля равна нулю, а для ?пред 500 в/мм. Такая напряженность .постоянного поля является рабочей. Крутизна реверсивной характеристики ?(Е?) керамики ВК-3 возрастает при увеличении напря женности электрического поля и снижается при увеличении частоты.

При комнатной температуре и слабых полях коэффициент управления ? при частоте 106 гц может достигать K?=5?6; эта управляемость сохраняется до сантиметрового диапазона волн.

Из материала ВК-3 изготовляется несколько видов варикондов, конструкция которых аналогична конструкции варикондов из материала ВК-2, т. е. изделия представляют собой диски (отдельные или собранные в блок) диаметром 1--25 мм и толщиной 0,4--0,7 мм.

Благодаря такой толщине диска емкость вариконда достигает максимальной величины уже при напряжении U~ = 20?30 в.

Коэффициент реверсивной нелинейности варикондов из материала ВК-3 в слабом поле K??4, а при напряжении 20--30 в K?=8?10.

Заслуживает особого внимания возможность получения блоков из материала ВК-3 с высокой начальной емкостью. Эти блоки имеют высоту около 15--18 мм. Диаметр 25 мм, а начальные значения емкости вариконда ВКЗ-Б около одной микрофарады.

При увеличении переменного напряжения до 30--40 в емкость блоков ВКЗ-Б возрастает примерно еще в два раза, затем с дальнейшим увеличением напряжения снижается.

Приведенные здесь данные относительно характеристик варикондов ВК-3 являются предварительными.

Материал ВК-4. Температура Кюри TС = ±10°. Нелинейность этого материала высокая, коэффициенты K~ и N~ составляют соответственно 10--16 и 0,05--0,08, т. е. они выше, чем у ВК-1, и несколько ниже, чем у ВК-2. В то же время этот материал обнаруживает значительно более стабильные свойства в интервале температур 20--85°,чем материалы, рассмотренные выше. Его ?нач, ?макс и K~ изменяются в зависимости от температуры мало. При снижении температуры коэффициент нелинейности увеличивается и уже при -40°С K~ ?40?50 (рис.1.7).

Тангенс угла потерь материала ВК-4 в слабом поле около 0,01--0,03; при повышенных переменных полях (100--160 в/мм) он высокий и составляет 0,3--0,4. Удельное объемное сопротивление образцов из этого материала при температуре 100° С не ниже 1010 ом·см.

По нелинейным свойствам керамика ВК-4 лишь немного уступает керамике ВК-2. Величины ?нач и ?макс у этого материала меньше, чем у ВК-2. Как видно из рис.1.8, крутизна возрастающего участка кривой ?(Е~)для ВК-4 несколько меньше, чем для ВК-2; в соответствии с этим и напряженность поля ?макс для ВК-4 больше, чем для ВК-2.

Так же как из материала ВК-2,из материала ВК-4 изготовляются вариконды в серийном производстве.

Материал ВК-5.Он имеет самые высокие нелинейные свойства и самые высокие значения диэлектрической проницаемости ?макс из всех известных в настоящее время керамических еегнетоэлектриков. На рис.1.9 приведены зависимости диэлектрической проницаемости BaTiO3, ВК-1, ВК-2 и ВК-5 от напряженности переменного поля. Его коэффициент нелинейности K~ = 40?50, ?макс =80000?100000. Максимальное значение диэлектрической проницаемости материала ВК-5 достигается при напряженности поля Eмакс =80?100 в/мм.

По степени нелинейности могут быть сопоставлены характеристики керамики ВК-5 и известного сегнето-электрика ТГС.

Диэлектрическая проницаемость ТГС достигает максимума для низких частот при полях примерно 30 в/мм раньше, чем диэлектрическая проницаемость ВК-5.

Однако высокая нелинейность варикондов из материала ВК-5 сохраняется в более широком спектре частот, чем у ТГС.

Высокая степень нелинейности характеристик материала ВК-5 сохраняется в широком интервале температур, от точки Кюри до весьма низких значений.

При снижении температуры от комнатной до --(140?150)°С коэффициент нелинейности значительно увеличивается от 40--50 до 320--360.

Величина Eмакс несколько увеличивается при снижении температуры и уменьшается при повышении темпе ратуры выше 20°С. Для титаната бария, материалов ВК-2 и ВК-5 определялся коэффициент прямоугольности Kп петли гистерезиса. Установлена определенная связь между коэффициентами нелинейности и прямоугольности: чем выше K~ тем выше Kп Однако даже для материала ВК-5 коэффициент прямоугольности при комнатной температуре не превышает 60--65% и возрастает до 85% при весьма низких температурах.

Из материала ВК-5 изготовляются объемные образцы ограниченных размеров на номинальные значения емкости от 10 до 10000 пф.

Материал ВК-6. Он отличается от ранее рассмотренных материалов наиболее высокими значениями температуры Кюри ( TС = 200±20°С), низким значением начальной диэлектрической проницаемости (?нач = 400--500). Материал обладает высокими нелинейными и изоляционными свойствами. При температуре 100° С величина рv?1012 ом*см, т. е. такого же порядка, что и у технических образцов титаната бария. Специфической особенностью этого материала является высокая прямоугольность петли диэлектрического гистерезиса. Это открывает новые возможности использования варикондов в качестве запоминающих и логических элементов электронно-вычислительных машин. У материала ВК-6 K~= 20?50 при Eмакс = 500?700 в/мм, ?макс =10000?22000, коэффициент прямоугольности Kп = 0,85?0,94, насыщение поляризации достигается при Енас=1,5?2 кв/мм; величина полной поляризации, измеренной на участке насыщения при 3--5 Ес, равна 13--14 мкк/см2. При увеличении напряженности поля поляризация материала ВК-6 сначала возрастает медленно, затем, начиная с некоторого значения поля, равного 300--400 в/мм, очень быстро и далее достигает участка насыщения. Чем ниже температура, тем отчетливее проявляется участок слабого изменения Р.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.