рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Модернизация спирального гидроциклона СГМ-ТПИ

Наплавка – нанесение слоя расплавленного металла на оплавленную металлическую поверхность путем плавления присадочного материала теплотой кислородно-ацетиленового пламени, электрической или плазменной дуги, лазера и др. – широко используется для восстановления изношенных деталей и создания на поверхности изделия слоя, обладающего повышенной износостойкостью, жаропрочностью  и другими свойствами.

Преимущества технологии заключаются в следующем:

• возможность нанесения покрытий большой толщины;

• высокая производительность;

• возможность нанесения износостойкого покрытия на основной металл любого состава;

• возможность повышения эффективности наплавки путем сочетания с другими способами обработки.

К недостаткам технологии наплавки следует отнести:

• ухудшения свойств наплавленного слоя из-за перехода в него элементов основного металла;

• деформация изделия, вызываемая высокой погонной энергией наплавки;

• ограниченный выбор сочетаний основного и наплавленного металла.

Для упрочнения деталей машин, работающих в условиях интенсивного абразивного износа, получили распространение электроды марок Т-590, Т-620.

Толщина наносимого покрытия или упрочняемого слоя зависит от режимов работы узла трения, его назначения, преобладающего вида изнашивания и величины допустимого износа. Значительная часть технологических задач, связанных с необходимостью повышения износостойкости, коррозионной стойкости, жаропрочности, восстановительного ремонта и других, может быть решена при использовании методов металлизации напылением, включающих газопламенную металлизацию, электродуговую, плазменную, высокочастотную индукционную металлизацию и детонационное напыление покрытий.


Напыление 

Методы металлизации напылением в настоящее время развиваются высокими темпами и находят, все большее распространение, благодаря своим широким техническим возможностям. Напылением можно наносить различные покрытия на детали из самых разных материалов металлы и сплавы, карбиды, бориды, фарфор, органические материалы и др.

Основной материал, на который напыляется покрытие, не испытывает при этом значительного термического влияния. Важным условием успешного применения указанных методов является тщательная предварительная подготовка поверхности детали под покрытие, определяющая прочность сцепления напыленного покрытия с основным металлом. Для удаления с поверхности жиров и масел широко используют промывку растворителями, например, бензином. Для снятия оксидной пленки детали подвергают дробеструйной или пескоструйной обработке

Из существующих методов напыления наибольшими возможностями обладают методы плазменного детонационного напыления, а так же способ электроимпульсного нанесения покрытия.

Катодное распыление (вакуумное распыление)- это распыление в вакууме поверхности напыляемого материала ускоренными ионами и конденсацией распыленных частиц (атомов, ионов) на деталь.


Термическое напыление (вакуумное испарение) заключается в нагревании напыляемого материала в вакууме до температуры, при которой давление паров над его поверхностью достигает 1 Па и выше, испарений и последующей конденсации паров на деталь.


Ионное осаждение (реактивное вакуумное напыление) осуществляется путем подачи в рабочую камеру небольших количеств активных газов, которые, вступая в реакцию с напыляемым материалом, обеспечивают осаждение на деталь уже готовых соединений.

Химико-термические методы упрочнения

Химико-термическая обработка (ХТО) позволяет получить в поверхностном слое изделие сплав, практически любого состава и, следовательно, обеспечить комплекс необходимых свойств – физических, химических, механических и др. В настоящее время накоплен большой опыт по применению различных видов и методов ХТО в машиностроении.


Азотирование (ионное). Ионное азотирование (азотирование в тлеющем разряде) по сравнению с обычным газовым процессом имеет целый ряд преимуществ:


• ускоряет диффузионный процесс насыщения поверхностных слоев азотом в 2 раза;

• позволяет получить диффузионный слой регулируемого состава и строения при обычном азотировании происходит охрупчивание поверхности;

• характеризуется незначительными деформациями изделий и высоким классом чистоты поверхности;

• обладает большой экономичностью (электроэнергия, расход насыщающихся газов);

• не токсично и отвечает требованиям по защите окружающей среды.

В качестве азотосодержащих газов применяют аммиак, азот и смесь азота с водородом.

Износостойкость азотированной стали в 1.5 – 4 раза выше износостойкости закаленных высокоуглеродистых и цементованных сталей.

Для осуществления ионного азотирования освоен серийный выпуск специализированных установок НГВ-6.6/6-И1; НШВ-9.18/6-И2 и др., выпускаемых, в частности, Саратовским заводом электротермического оборудования.


Карбонитрация (жидкое азотирование). Широко применяется за рубежом. Приводится для упрочнения деталей машин с целью повышения их износостойкости. Процесс проводится при T=560-570 ˚С в расплаве цианита калия. Общая глубина слоя составляет порядка 0.15 – 0.6 мм с поверхностной твердостью (700 – 1300 HV). Карбонитридная зона способствует увеличению задиростойкости, уменьшает коэффициент трения, повышает износостойкость, обуславливает хорошую прирабатываемость трущихся поверхностей и сопротивление коррозии.

Проанализировав все вышеприведенные методы упрочнения,  можно сделать вывод, что наиболее подходящим для предстоящего упрочнения метала является метод (ХТО) – химико-термического упрочнения, а в частности ионное азотирование.

 

   Сущность ионного азотирования заключается в следующем.

В разряженной азотосодержащей атмосфере (1.3*10² - 17*10² Па) между катодом и анодом возбуждается тлеющий разряд и ионы газа, бомбардируя поверхность катода, нагревают ее до температуры насыщения, при которой происходит насыщение поверхностного слоя ионами азота. Температура азотирования составляет 470˚ - 580˚ С, рабочее напряжение колеблется от  400 до 1100 В. Продолжительность процесса от нескольких минут до 24 часов. Для разных марок сталей определены оптимальные режимы процесса, обеспечивающие требуемую толщину и твердость защитного слоя.      Твердость азотированного слоя не меняется при нагреве до 450 - 500˚ С. Обычно общий слой азотирования (особенно при повышенных контактных напряжениях) составляет 0.4 – 0.5 мм. Ионное азотирование следует использовать в тех случаях, когда контактные напряжения не слишком велики и деталь работает в условиях трения скольжения, или абразивного износа.

Азотирование данного вида проводят в печах различной конструкции периодического и непрерывного действия – шахтных, камерных, толкательных  и конвеерных.

Основными контролируемыми и регулируемыми параметрами газового азотирования являются:

температура;

продолжительность;

давление;

состав насыщающей среды.

Упрочнение метала гидроциклона следует производить в камерной печи при температуре 570˚С, с временем насыщения 9 часов, защитный слой при этом составит 0.52 мм. В этом случае будет достигнут  ресурс в 2000 часов работы гидроциклона до списания.

Безопасность труда при проведении процессов азотирования

При проведении процесса азотирования предусматривают меры по защите работающих от возможных действий опасных и вредных производственных факторов в соответствии с ГОСТ 12.0.003 – 75. Уровни физически опасных и вредных производственных факторов не должны превышать значений, установленных санитарными нормами.

Производственное оборудование участка азотирования должно соответствовать требованиям ГОСТ 12.2.003 – 74 и ГОСТ 12.3.004 – 75.

Работающие на участке азотирования должны использовать средства индивидуальной защиты, предусмотренные санитарными нормами и соответствующие требованиям ГОСТ 12.4.011 – 75.

При работе с технологическими материалами, а так же при хранении и транспортировании их и отходов производства должны соблюдаться требования ГОСТ 12.3.004 – 75.

На рабочих участках азотирования должны быть разработаны рабочие инструкции по безопасности труда.

 

Монтаж гидроциклона

  При монтаже, гидроциклон  необходимо устанавливать вертикально и крепить двумя хомутами к стене бурового здания с помощью болтов.  Хомуты следует изготавливать из стальных разных по размеру пластин:

габаритные размеры верхнего хомута пластины: 346 х 40 х 3;

габаритные размеры нижнего хомута пластины: 326 х 40 х 3;

 Пластины следует изогнуть в форме полуокружности, как показано на рис.9

радиус верхней пластины 45 мм. радиус нижней пластины  40 мм.


Рис.9 эскиз хомута.


Крепить хомут к буровому сданию предлагается болтами, как это показано на рис.10.

Рис.10. Способ крепления хомутов к  

             буровому сданию.


III. ЭСКИЗНЫЙ ПРОЕКТ

Цель курсового задания заключается в модернизации гидроциклонной установки СГМ-ТПИ, уменьшение его габаритных размеров, упрощение технологии изготовления и увеличения срока службы.

  В гидроциклонную установку входят: малогабаритный спиральный гидроциклон СМГ-С; соеденительные шланги; 3 штуцера с различными по диаметру отверстиями; хомуты, для крепления гидроциклона к стене бурового здания, болты.

На Рис. 11. показан гидроциклон                                

     СМГ-С  в рабочем положении,

закреплённый на стенке бурового здания с помощью хомутов.                                                   

Рис. 11. Эскиз гидроциклонной установки СМГ-С.


Принцип работы гидроциклонной установки СМГ-С.

В процессе бурения скважины, по мере ее углубки и зашламовывания очистного агента, возникает необходимость в очистке промывочной жидкости, зашламованный глинистый раствор поднимаясь по затрубному пространству направляется через отводной патрубок превентора в гидроциклон, где проходит очистку седиментационным осаждением, чему способствует 3 различных штуцера. Очищенная жидкость из гидроциклона направляется в зумпф, откуда через фильтр всасывается патрубком бурового насоса, который направляет промывочную жидкость с постоянным давлением, через гибкий шланг и сальник-вертлюг, в скважину, далее цикл повторяется.

В комплект гидроциклонной установки СМГ-С входят три песковых штуцера с различными проходными отверстиями, для различных режимов отчистки бурового агента от зашламовывания. Отверстия  в них выполняются в виде конуса в верхней части.     Начальный диаметр конуса штуцера, должен быть равен конечному диаметру  внутренного конуса гидроциклона.

Применение штуцеров зависит от зашламованности бурового агента и производительности бурового насоса. Так штуцер (Рис.12,а) используется при производительности насоса 200-220 л/мин, штуцер (Рис.12,б) используется при расходе 160 л/мин, штуцер (Рис.12,в) ставится при производительности насоса 100 л/мин. Для снижения износа штуцеры следует упрочнить при помощи химико-термического упрочнения (ХТО).

Для крепления хомутов к стенке бурового здания, выбираем болты марки СЧ12-28,   отлитых из серого чугуна. Шаг резьбы – 2 мм; диаметр – 20 мм

Чтобы исключить различного рода вибрации в процессе работы гидроциклона, между хомутами и корпусом гидроциклона не должно быть зазоров.  Поэтому, очевидно, что необходимо сделать расчет.

С помощью этого расчета мы определим, на сколько оборотов можно затянуть гайку.

Толщина стенки бурового здания =100 мм.

 

Решение:

Допускаемое напряжение для болта = 80 МПа, для пластины

= 60 МПа. Принимаем = 2*105 МПа, = 0.7*105 МПа  [ 5,табл. 2.4, стр 70].


При затягивании гайки пластина будет сжиматься, а болт растягиваться. Применяя метод сечений и составляя уравнение равновесия  для сил (рис. 14), получим


                           


Таким образом задача статически не определима, так как неизвестных сил две, а статика для системы сил, направленных по одной прямой, дает лишь одно уравнение.                                                                                            

Для составления уравнения перемещений рассуждаем следующим образом: при завертывании гайки на оборотов она переместится на . Так как вначале торец гайки касался шайбы, то это перемещение могло быть осуществлено за счет деформаций болта и пластины.                Рис. 14


   Предположим, что пластина абсолютно жесткая, тогда перемещение гайки равно удлинению болта. Если допустить, что пластина податливая, а болт абсолютно жесткий, то перемещение гайки равно сжатию пластины. Фактически обе детали податливы и при затягивании гайки деформируются. Следовательно, перемещение гайки равно сумме абсолютных значений удлинения болта и сжатия пластины.


 или  .                               (1)

Вычислим допускаемые силы для болта и пластины (для болта не учитываем влияние резьбы)


              (2) 

               (3)

В качестве допускаемой должна быть принята меньшая сила


Вычисляем коэффициенты податливости болта и пластины:


                        (4)


                (5)


Определяем допускаемое по условию прочности число оборотов гайки:


             (6)

Заключение

Гидроциклон СМГ-С рекомендуется использовать в неосложненных геолого-технических условиях, он может быть рекомендован для использования в организациях занимающихся геологоразведочным бурением.

Данная установка будет находить оптимальное применение при бурении на твердые полезные ископаемые с применением промывки глинистым раствором.

По сравнению с гидроциклоном СГМ-ТПИ  данная гидроциклонная установка обладает следующими преимуществами:

• простота конструкции, эксплуатации, регулировки, монтажа, высокий ресурс   работы;

• высокая степень очистки промывочной жидкости – до 0.2%;

• незначительные потери промывочной жидкости через штуцеры;

• уменьшены габаритные размеры и металлоемкость конструкции;

Технические характеристики модернизированного гидроциклона СМГ-С по сравнению с гидроциклоном СГМ-ТПИ  остались неизменными. С учётом упрочнения средний ресурс гидроциклона СМГ-С до списания приблизился к 2000 часов.

Список использованной литературы


1.                Поваров А. И.  Гидроциклоны на обогатительных фабриках. -М.: Недра, 1978. -267 с.

2.   Мустафаев А. М., Гутман Б. М. Гидроциклоны в нефтедобывающей промышленности. -М.: Недра, 1971. -260 с.

3. Рябчиков С. Я., Дельва В. А., Чубик П. С.  Руководство к лабораторным работам по буровым машинам и механизмам. – Томск: изд.ТПУ, 1994.-112 с.

4.                  Резниченко И. Н.  Приготовление, обработка и очистка буровых растворов. -М.: Недра, 1982. -230 с.

5.                  Ицкович Г. М.  Сопротивление материалов: Учеб. Для учащихся машиностроит. Техникумов. -7-е изд., испр. –М.: Высш. Шк., 1986. -352 с.: ил.

6.                  Бабаев С. Г. Надежность и долговечность бурового оборудования. –М.: Недра, 1984. -184 с.

7.                  Поваров А. И.  Гидроциклоны. М.: Госгортехиздат, 1961. -267 с.

8.  Лахтин Ю.М., Арзамасов Б.Н. Химико-термическая обработка металлов. –  Учебное пособие для вузов. – М.: Металлургия, 1985. 256 с.



Страницы: 1, 2, 3, 4




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.