рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Модернизация, телекоммуникационного оборудования в ЗАО "Кузбассэнергосвязь"

Перечисленные достоинства делают решения, основанные на технологии SDH, рациональными с точки зрения инвестиций. В настоящее время она может считаться базовой для построения современных транспортных сетей как для корпоративных сетей различного масштаба, так и для сетей связи общего пользования.

Для организации связи на участке Кемерово-Новокузнецк, с учетом рассчитанного числа потоков (506Е1), необходим мультиплексор STM-16 со скоростью передачи 2488 Мбит/с.

Аппаратуру и оборудование для систем передачи SDH предлагают многие известные фирмы-изготовители, такие как «Alcatel», «Siemens», «Nortel», «Huawei» и другие. Практически все производители представлены на российском рынке.

Воспользуемся услугами фирмы «Huawei» и остановим выбор на мультиплексоре Optix OSN 3500.

Оборудование Optix OSN 3500 фирмы «Huawei» предназначено для организации по одному линейному тракту 30240 каналов ТЧ или ОЦК (основной цифровой канал) с тактовой частотой 2488 МГц.

Мультиплексор Optix OSN 3500 является компактным мультиплексором SDH уровня STM-16. Возможно использование данной системы в режимах мультиплексора ввода/вывода, оконечного (терминального) мультиплексора, регенератора.

Для организации связи на проектируемом участке используем топологию «линейная цепь» и «плоское кольцо». «Линейная цепь» – это линейная последовательность мультиплексоров, из которых два оконечных, а остальные ввода/вывода.

На рисунке 4.1 приведена схема соединения «Линейная цепь».


Рисунок 4.1 – Схема соединения «Линейная цепь»


Оконечный (терминальный) мультиплексор (Terminal Multiplexer - TM) –оконечное устройство сети с некоторым числом каналов доступа и одним или двумя оптическими входами/выходами, называемыми агрегатными портами или интерфейсами.

Соединение «плоское кольцо» - рисунок 4.2.

Рисунок 4.2–Схема соединения «Плоское кольцо»


Сочетание элементарных топологий линейной структуры построения сети и с кольцевой топологией, позволяет реализовать архитектуру построения транспортных сетей SDH любой сложности и назначения.

Мультиплексоры ввода/вывода (Add/Drop Multiplexer - ADM) – осуществляют сквозную коммутацию потоков в обоих направлениях, поступающих с агрегатных портов, а так же позволяют вводить (Add)/выводить (Drop) отдельные цифровые компонентные сигналы. Мультиплексор имеет два или четыре агрегатных порта, к которым подключаются волоконно-оптические линии связи.

Терминальные мультиплексоры будут установлены в Кемерово и Новокузнецке, мультиплексоры ввода/вывода в городах Ленинск-Кузнецкий, Белово, Прокопьевск.

Для соединения волоконно-оптических кабелей, несущих сигнал STM-16 к удаленному сетевому элементу SDH, используются агрегатные интерфейсы.

Используем интерфейс на 1550 нм большой дальности действия. В таблице 4.1 приведены параметры оптического интерфейса.


Таблица 4.1 – Параметры оптического интерфейса

Уровень SDH

STM-16

Скорость передачи, кбит/с

2488320

Код интерфейса

L-16.2

Рабочий диапазон, нм

1530…1570

Характеристики оптического передатчика (точка S)

Источник излучения

Лазер DFP (SLM)

Ширина спектра излучения

на уровне -20 дБм, нм

0,5

Минимальный коэффициент

подавления боковой моды, дБ

30

Максимальная излучаемая мощность, дБм

0

Минимальная излучаемая мощность, дБм

-4

Характеристики оптического приемника (точка R)

Минимальная чувствительность, дБм

-26

Максимальная перегрузка, дБм

-9

Дополнительное затухание оптического тракта, дБ

2

Характеристики оптического тракта (между точками S и R)

Диапазон оптического затухания, дБ

9…20

Дисперсия, пс/нм

1400

Допустимые потери в кабеле, дБ

24


4.3 Выбор типа оптического кабеля

Развитие современных телекоммуникационных сетей России, как и во всем мире, базируется на использовании в качестве среды передачи оптических кабелей с одномодовыми оптическими волокнами.

Телекоммуникационные сети, построенные на основе применения оптических кабелей с одномодовыми оптическими волокнами, стали строиться, начиная с 1996 года. Кабельная промышленность России успешно осваивает внутренний рынок. Большинство кабельных заводов выпускает кабели широкой номенклатуры различного назначения (линейные, внутриобъектовые) и для различных условий прокладки и эксплуатации (подземные, подводные, подвесные, распределительные, станционные). На сегодняшний момент определены технические требования, которым должны удовлетворять оптические кабели различных производителей. С одной стороны эти требования направлены на унификацию конструкций и параметров оптического кабеля, с другой стороны – нацеливают производителей на выпуск широкой номенклатуры кабелей, позволяющей потребителю выбирать конструкцию кабеля под конкретные условия применения в различных регионах России.

Общее число волокон определяется исходя из емкости цифровых линейных трактов, необходимости их резервирования, а также иными соображениями (ответвления для зоновой и местной связи, аренда, технические нужды, и так далее). Тип кабеля определяется заданной длиной волны, допустимыми потерями и дисперсией, а также условиями прокладки (категорией грунта, наличием переходов через водные преграды). При выборе ОК следует, разумеется учитывать его стоимость, так как примерно 80% всех капитальных затрат на организацию сети связи уходи на приобретение кабеля и строительство ВОЛС.

В соответствии с «Техническими требованиями к оптическим кабелям связи, предназначенными для применения на взаимоувязанной сети Российской федерации» оптические кабели связи должны удовлетворять следующим требованиям:

-        герметичность и влагостойкость;

-        механическая защита;

-        стойкость к избыточному гидростатическому давлению;

-        защита от грызунов.

Оптические кабели вне зависимости от условий применения должны выдерживать циклическую смену температур, от низкой до высокой рабочей температуры.

Учитывая трассовые и грунтовые условия местности, на проектируемом участке, используем оптический кабель производимый ЗАО «Москабель-Фуджикура» ОМЗКГМ-10-01-0,22-24(7,0).

Компания располагает современным технологическим оборудованием швейцарской фирмы «Swisscab». В производстве используются материалы ведущих зарубежных и отечественных фирм.

Приведем расшифровку кабеля:

Оптические кабели марки ОМЗКГМ предназначены для прокладки в кабельной канализации, трубах, блоках, коллекторах, в грунтах всех категорий, кроме подверженных мерзлотным деформациям, через водные преграды, неглубокие болота и несудоходные реки.

Допустимая температура эксплуатации от минус 40 до плюс 60˚С.

В таблице 4.2 приведены характеристики кабеля ОМЗКГМ-10-01-0,22-24.


Таблица 4.2 – Характеристики кабеля ОМЗКГМ-10-01-0,22-24(7,0)

Параметр

Значение

Оптическое волокно

Одномодовое

Количество ОВ

24

Диаметр кабеля, мм

12,9…20,8

Масса, кг/км

258…859

Коэффициент затухания

на длине волны 1,55 мкм, дБ/км

0,22, не более

Хроматическая дисперсия

на длине волны 1,55 мкм, пс/нм∙км

18, не более

Допустимое растягивающее усилие, кН

7,0

Допустимое раздавливающее усилие, кН/см

0,6

Срок службы, лет

25, не менее

Строительная длина, м

5000, не более


5 Разработка структурной схемы организации связи

На схеме организации связи указываются оконечные пункты и транзитные пункты, где предусмотрено выделение, все мультиплексоры, установленные в этих пунктах, а так же соединения между ними.

Связь организуется по схеме «линейная цепь», с резервированием по схеме 1+1.

Исходя из рассчитанного числа потоков, на проектируемом участке необходимо организовать:

-        для телефонии: 190 двухмегабитных потоков;

-        для доступа в Internet: 316 двухмегабитных потоков.

Таким образом, на станции Кемерово организуется 506 двухмегабитных потоков, из которых в направлении:

Кемерово – Ленинск-Кузнецкий:

21Е1 – для телефонии, 10Е1 – для Internet;

Кемерово – Белово:

28Е1 – для телефонии, 10Е1 – для Internet;

Кемерово – Прокопьевск:

51Е1 – для телефонии, 20Е1 – для Internet;

Кемерово – Новокузнецк:

90Е1 – для телефонии, 276Е1 – для Internet.

Распределение нагрузки по сети указано на схеме организации связи, приведенной в Приложении Б.



6 Комплектация оборудования


Используя на центральном уровне матрицу кросс-коммутации SDH, оборудование OptiX OSN 3500 состоит из блока интерфейсов, блока SCC, блока обработки заголовков и вспомогательного блока интерфейсов. На рисунке 6.1 представлена структура системы OptiX OSN 3500. Функциональные и подчиненные платы соответствующих блоков приведены в таблице приложение В.

Рис. 6.1 – Конфигурация системы OptiX OSN 3500

 

Чтобы отвечать требованиям услуг разной емкости, OptiX OSN 3500 поддерживает работу различных плат: GXCS (с емкостью кросс-коммутации каналов высокого порядка: 35G и емкостью кросс-коммутации каналов низкого порядка:5G) и EXCS (с емкостью кросс-коммутации каналов высокого порядка: 60G и емкостью кросс-коммутации каналов низкого порядка:5G).

Мультиплексор OptiX OSN 3500 с двухрядным расположением модулей устанавливается в статив стандартизированный ETSI (2200мм х 600мм х 300мм), причем в одном стативе может быть размещено два мультиплексора OptiX OSN 3500 (730мм х 496мм х 295мм). Непосредственно на мультиплексоре все оптические выводы находятся на лицевой стороне оптических интерфейсных модулей. Подключение электрических интерфейсов, осуществляется в верхней части мультиплексора. На рисунке 6.2 показано распределение слотов оборудования OptiX OSN 3500. Платы обработки и платы интерфейсов располагаются в слотах как показано на рисунке 6.2 и в таблице 6.1.

Рисунок 6.2 – Размещение слотов оборудования OptiX OSN 3500


Ядром мультиплексора является не блокируемая, полнодоступная матрица временного коммутатора. Плата кросс-коммутации и синхронизации (EXCSA) обеспечивает кросс-коммутацию сигналов SDH и PDH и синхронизацию системы, слот 9 и 10, горячее резервирование 1+1.

Блок SCC – обеспечение интерфейса для соединения оборудования с системой сетевого управления и обработка сигналов SDH, слот 17 и 18, горячее резервирование 1+1.

Блок источника питания PIU обеспечивает доступ к источнику питания и защиту оборудования от скачков напряжения, слот 27 и 28, горячее резервирование 1+1.

Вспомогательная плата интерфейсов AUX обеспечивает различные интерфейсы для технического обслуживания: интерфейс RS-232 и интерфейс служебного телефона, слот 37.

Платы кросс-коммутации и синхронизации, плата сетевого управления, блок источника питания, вспомогательная плата интерфейсов являются неотъемлемой частью мультиплексора, комплектация мультиплексора остальными платами осуществляется от конкретного применения данного мультиплексора.

Поскольку в Кемерово необходимо осуществить ввод/вывод 190Е1, и 316Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, семь плат PQ1 63хЕ1, четыре рабочих, одна резервная;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.

В Новокузнецке необходимо осуществить ввод/вывод 90Е1, и 276Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, платы оптического линейного тракта STM-4 интерфейс V-4.2, SL-4, две платы и три платы PQ1 63хЕ1;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.

В Белово необходимо осуществить ввод/вывод 28Е1, и 10Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, плата оптического линейного тракта STM-4 интерфейс V-4.2, SL-4, плата STM-1 интерфейс V-1.2, SL-1L и четыре платы D12В 32хЕ1;

В Прокопьевске необходимо осуществить ввод/вывод 51Е1 , и 20Е1 Ethernet,

то комплектация будет следующей :

-                              две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, V-1.2, SL-1L и четыре платы D12В 32хЕ1;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.


6.1 Расположение оборудования на объектах “Кузбассэнергосвязь”

ЦУС (г. Кемерово)

Рисунок 6.4. Комплектация мультиплексора OptiX OSN 3500 в узле Кемерово.


ЮЭС (г.Новокузнецк)

Рисунок 6.5. Комплектация мультиплексора OptiX OSN 3500 на узле города Новокузнецка.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.