рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Общие принципы технологии криогенного охлаждения мяса индейки

          Такие процессы обмена аминокислот, как дезаминирование и переами-

нирование, также примыкают к циклу трикарбоновых кислот. Многие ферменты дезаминирования аминокислот обнаружены в митохондриях. Син-

тез многих аминокислот, как и «непрямое» их дезаминирование, осуществля-

ется реакциями переаминирования. Переаминирование аминокислот связано

с активностью аминофераз, содержащихся в митохондриях.

          Вместе с тем ферменты переаминирования обнаружены также в жидкой части саркоплазмы.

          Таким образом, в митохондриях мышц содержатся сложные фермен-

тные системы, составляющие единый комплекс, к которому примыкают фер-

менты других компонентов клетки. Изменение физико-химического состоя-

ния этих органелл сказывается на активности их ферментов. Деструкция ми-

тохондрий нарушает координированное осуществление сложного комплекса взаимосвязанных процессов обмена, происходящих в них.

          Саркоплазматический ретикулум содержит, кроме активируемой иона-

ми магния АТФ-азы, также обладающую очень высокой активностью АМФ-аминогидролазу.

          В ядрах содержатся гликолитические, окислительные, гидролитические ферменты, а также ферменты белкового синтеза. Кроме того, в ядрах имеют-

ся ферменты синтеза нуклеиновых кислот (ДНК-полимераза и РНК-полиме-

раза).

          С миофибриллами связана основная АТФ-азная активность, которой, как известно, обладает миозин и она зависит от присутствия катионов Na , K ,

Li , Ca , Mg , NH . Очищенный миозин активируется ионами кальция и ингибируется ионами магния. Наряду с этим имеется также растворимая АТФ-аза, отличная от миозина, содержащаяся в различных структурах клет-

ки: в ядрах, митохондриях и мембранных элементах саркоплазмы. Это АТФ-аза активируется ионами магния.

          АТФ-азной активностью обладает определенная часть молекулы мио-

зина – его компонент – Н-миозин. Многократно переосажденный миозин наряду с АТФ-азной активностью АМФ-аминогидролазы, ацетилхолинэсте-

разы. Активность этих ферментов сосредоточена в L-миозине. Кроме того, миофибриллы характеризуются глютаминазной активностью. В проявлении активности ферментов в миофибриллах играют роль фосфолипиды. При де-

липировании миофибрилл в них резко снижается активность АТФ-азы, АМФ-аминогидролазы и ацетилхолинэстеразы.

          В сарколеммной мембране обнаружено наличие АМФ-аминогидролазы и весьма активной ацетилхолинэстеразы.

          К рибосомным относят ферменты, принимающие участие на тех стади-

ях синтеза белка, которые происходят на рибосомах. Эти ферменты участву-

ют в прикреплении, передвижении и отделении от рибосомной поверхности И-РНК и Т-РНК; перенос недостроенных полипептидов от одной молекулы Т-РНК и сопутствующее образованию пептидной связи. К рибосомным ферментам относят также рибонуклеазу 1, ГТФ-азу и др.

          Лизосомы содержат клеточные гидролазы: кислую рибонуклеазу, дезоксирибонуклеазу, кислую фосфатазу, катепсины, эстеразы, гликозидазы. В живой клетке эти ферменты могут действовать в основном на фагоцити-

рованный материал, попавший внутрь лизосомы. Мышечной клетке это необходимо для обновления ее важнейших структур и компонентов. Если целостность лизосомы нарушена, то гидролазы высвобождаются и перевари-

вают компоненты клетки.

          Наличие в лизосомах липопротеидной мембраны надежно удерживает гидролитические ферменты и предотвращает переваривание субстратов мы-

шеечного волокна тотчас после убоя. Однако в дальнейшем, под воздействи-

ем различных факторов,  происходит высвобождение гидролаз










































Структурно-механические свойства сырья

          Структурно-механические характеристики представляют собой фундаментальные физические свойства продуктов. Они проявляются при механическом воздействии на обрабатываемый продукт и характеризуют его сопротивляемость приложенным извне усилиям, обусловленную строением и структурой продукта. Эти характеристики используются для расчета процес-

сов в  рабочих органах машин с целью определения их механических пара-

метров (геометрических, кинематических и динамических); они отражают существенные аспекты качества продуктов. Кроме того, структурно-механи-

ческие характеристики учитываются при расчете различных физических процессов (22).

          Сдвиговые характеристики.

          В я з к о  с т ь  к р о в и. Кровь состоит из плазмы и форменных элемен-

тов. Плазма составляет 60% объема крови и представляет собою сложный раствор, содержащий белки, глюкозу, холестерин и его эфиры, фосфатиды, жиры и свободные жирные кислоты, небелковые азотистые и минеральные вещества. Форменные элементы крови (40%) представлены красными кровя-

ными шариками (эритроциты), белыми (лейкоциты) и кровяными пластинка-

ми (тромбоциты). Общее представление о составе крови дано на рис. (1).

Сухие вещества плазмы крови (7).


Б

М

Л

С

Аз

Ф

Г

А


Рис. (1).  Б – Белки, 7,5%; Ф – Фибриноген, 0,2%; Г – Глобулины, 2,8-3,0%; А – Альбумины, 4,3%;  М – Минеральное вещество, 1%; Л – Липиды, 1%; С – Сахар, Аз – Азотистые вещества.


  При  увеличении концентрации сухих веществ вязкость крови возрастает и уменьшается при увеличении температуры, что наглядно видно из табл. 8-10. В таблицах приведены данные исследований пищевой стабилизированной крови и плазмы, полученной из этой же крови промышленным сепарирова-

нием. Концентрирование осуществляется ультрафильтрацией на лаборатор-

ной установке. Вязкость измеряли с помощью вискозиметра Гепплера и рео-

вискозиветра Ротовиско.







Таблица 8

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и температуры

Концентрация сухих веществ, кг на 1 кг крови

Температура,  С

10

20

30

40

0,261

92

59

46

36

0,213

31

19

14

10

0,182

15

10

7

5

0,152

11

7

6

4








          Данные таблицы 8 получены при градиенте скорости 380 с ^(-1), а

табл. 9 – при температуре 20 С. Следует отметить, что при концентрации 0,261 кровь представляет собой типичную степенную жидкость.






Таблица 9

Зависимость вязкости крови h*10^3 (в Па*с) от концентрации сухих веществ и градиента скорости

Концентрация сухих веществ, кг на 1 кг крови

Градиент скорости, с

40

100

200

380

570

0,261

109

85

71

59

53

0,213

41

27

21

19

18

0,182

10

10

10

10

10

0,152

7

7

7

7

7


Таблица 10

Зависимость вязкости плазмы крови h*10^3 ( в Па*с) от концентрации и температуры

Концентрация сухих веществ, кг на 1 кг крови

Температура, С

10

20

30

40

0,1920

18,3

12,0

8,3

6,7

0,1635

11,5

7,7

5,5

4,5

0,1190

5,6

3,9

2,9

2,4

0,0835

3,1

2,3

1,8

1,5


          При меньшей концентрации изменения эффективной вязкости от гра-

диента скости не описываются степенным законом, а плазма крови представ-

ляет собой ньютоновскую жидкость (см. табл. 10). При повышении концен-

трации сухих веществ вязкость крови возрастает менее интенсивно по сравнению с вязкостью бульона.

          Компрессионные характеристики.

          К о м п р е с с и н н ы е   х а р а к т е р и с т и к и   ц е л ы х  т к а н е й

м я с а  п р и  о б ъ е м н о м  с ж а т и и. Характеристики изучали с помощью цилиндров с поршнями при одностороннем нагружении. Объем цилиндра 0,0009 м^3, пределы изменения гидростатического давления – от 1*10^5 до 13*10^5 па. При этом были определены следующие реологические характе-

ристики: мгновенный модуль упругости давления 11,6*10^5 r^0,4; макси-

мальная деформация при длительности действия давления 180 с – 1,34*

*10^(-5) r^0,78; кинетика изменения относительных деформаций после разгрузки – 7,5*10^(-7)  r^0,61  [1 - exp(-8,9t)] + 134 r^0,78  (где t - длитель-

ность восстановления объема, с; пределы изменения t - от 0 до 10с).

          Прочностные характеристики.

          П р о ч н о с т н ы е  х а р а к т е р и с т и к и  ц е л ы х  т к а н е й 

м я с а . При растяжении предел прочности различных мышц мяса определил Николаев. Длина образцов составляла от 0,01 до 0,02 м при поперечном сечении 0,005*0,002 м или 0,0075*0,002 м; скорость растяжения составляла 3*10^(-5) или 6*10^(-5) м/с. По-видимому если считать мясо нелинейным реологическим телом, то прочностные характеристики будут зависеть от геометрических размеров образца и кинематики нагружения.

          Авторы установили корреляционную связь между прочностными ха-

рактеристиками и органолептической оценкой нежности. Их данные показы-

вают, что для сырого мяса напряжение разрыва зависит от вида мышцы (длиннейшая мышца спины, полусухожильная, трапецевидная мышцы); для вареного мяса такой дифференциации не наблюдается. С улучшением неж-

ности (более высокая органолептическая оценка в баллах) напряжение разрыва и модуля упругости уменьшаются, причем для сырого мяса эта зависимость более пологая, для вареного – более крутая.

          П р о ч н о с т н ы е  х а р а к т е р и с т и к и  ц е л ы х  т к а н е й  м я с а п р и  с р е з е. Прочность мяса при срезе через матрицу исследовали с помощью пуансонов с углами заточки 90, 80 и 30. В процессе взаимодей-

ствия пуансона с материалом производили одновременную регистрацию усилий и деформаций на автоматических самопишущих приборах КСП-4. Образцы мяса толщиной 0,015 м при температуре от +10 до -1,5 С исследовали на прочность при резании поперек волокон при постоянной скорости перемещения пуансона 4,6*10^(-3) м/с.

          Разрушение структуры пуансоном происходит в две стадии. При де-

формации мяса до 90+5% мышечные волокна разрезаются непосредственно режущей кромкой пуансона. Соединительная ткань, как более прочная, уплотняется и срезается при увеличении деформации до 98+0,3%, т.е. когда пуансон начинает входить в отверстие, выполняющее роль матрицы.

          Значения величин усилий разрезания мышечных волокон, приведенных к единице длины режущей кромки пуансона, соответственно равны для пуансона с углом заточки 90  - 3,85*10^3 Н/м, 80  - 3,52*10^3 Н/м и 30 – 2,68*

10^3 Н/м.Величины предельных усилий при полном срезе образца изменяют-

ся в зависимости от угла заточки пуансонов от 5,4*10^3 до 6,2*10^3 Н/м, при этом деформация образцов приближается к 98%.

          Влияние масштабного фактора рассматривали при срезе образцов, высоту которых изменяли от 0,005 до 0,015 м. При увеличении высоты образцов уменьшается величина напряжения среза, вычисленная по началь-

ной высоте образцов. При изменении высоты образцов от 0,005 до 0,015 м предельное усилие среза увеличивается от 2,7*10^3 до 6,2*10^3 Н/м и соответственно линейно уменьшается напряжение – от 5,4*10^5 до 4,1*10^5 Па.

          При резании мяса лезвием наименьшие энергозатраты соответствуют углу встречи ножа и продукту около 60. При скорости подачи мяса от 0,05 до 0,09 м/с, при угле заточки ножа 18 и 25 и угле встречи 50-60 удельные усилия резания различаются незначительно и составляют 6000-7000 н/м.

          Плотность.

          П л о т н о с т ь  к о с т и . Плотность приведена в таблице 11 и 12. Данные довольно близки по значению. Некоторое различие объясняется, по-видимому, тем, что авторы по-разному именовали кости. Имеются данные о плотности реберной кости, величина которой определена равной 1300-1380 кг/м^3. Однако они существенно превышают данные других авторов.

          Насыпная плотность кости интенсивно меняется с увеличением давле-

ния. Этот процесс сопровождается разрушением и уплотнением кости. Масса кости характеризует ее с естественными внутренними полостями и макропо-

рами. Масса плотной части кости без естественных пустот будет больше. Укладочная масса кости делением массы обваленной кости, уложенной в емкость вручную с наименьшими пустотами, на объем, в который кость укладывали.

Таблица 11

Плотность кости

Кость

Насыпная плотность, кг/м^3

Средняя плотность, кг/м^3

До дробления

После дробления

Рядовая

163-175

600-700

-

Трубчатая

800-825

900-950

1730

Плотная масса

-

-

1300-1590

Очищенная плотная масса

-

-

1900-2400

Свежая с соединительной тканью

-

-

1400-1750

Обезжиренная сухая

-

-

1700-1900

Страницы: 1, 2, 3, 4, 5, 6, 7




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.