рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Определение и обоснование видов и режимов структурной обработки сплава Cu+2,3%Be

В системе Cu – Be (с содержанием Be до 12%) имеются фазы a, b, g. По Н.Х. Абрикосову, фазы b и g(b') являются единым бертоллидом (химическим соединением переменного состава), а сплав, отвечающий химическому соединению CuBe, лежит за пределами области однородного твердого раствора g (b') [2].

Фаза a представляет собой твердый раствор Be в Cu, с максимальной растворимостью Be составляющей 2,7% при температуре 866°С (т. В на рис.1). При этих условиях она имеет гранецентрированную кубическую кристаллическую решетку с периодом 3,566Å. Растворимость Be с понижением температуры снижается, его значение изменяется по кривым ВА и AL (см. рис.1), и при температуре эвтектоидного распада b фазы она равна 1,55% , при 350°С — менее 0,4%.

При 866°С в интервале концентраций бериллия 2,75 - 4,2% по перитектоидной реакции между a-фазой и жидкостью образуется фаза b (). Сплавы, содержащие от 2,75 до 4,2% (по массе) бериллия, имеют одинаковую температуру конца затвердевания около 866°С (1139К) — линия BD соответственно. Микроструктура этих сплавов после закалки с 840°С состоит из a+b  фазы. При увеличении содержания бериллия температура начала и конца затвердевания сплавов понижается. Минимальное значение (т. К на рис.1), как указывалось ранее, достигается при температуре 860°С и концентрации 5,25% Be и лежит на диаграмме состояния над однородной областью b-фазы. При этой концентрации температура начала и конца превращения  совпадают и оно идет не в интервале температур, а при постоянной температуре. Если дальше увеличивать содержание бериллия, то превращение снова идет в интервале температур и температура начала и конца затвердевания сплавов повышается. Микроструктура сплавов, содержащих от 4,3 до 8,4% (по массе) Be, после закалки с температуры 840°С состоит из одних кристаллов b. Фаза b выше линии AFG » 605°С (условно принятая средняя температура распада этой фазы) — неупорядоченный твердый раствор бериллия в меди. Период его неупорядоченной объемно-центрированной кубической решетки при содержании 7,2% Be и температуре 750°С равен 2,79Å.

При закалке с температуры 840°С сплавов с содержанием бериллия больше 8,4% , вплоть до 11% микроструктура состоит из кристаллов b и g фазы. В гомогенной области g-фаза (в некоторых источниках b'-фаза) содержит от 11,3 до 12,3% Be. Она представляет собой упорядоченную фазу на основе интерметаллида CuBe с упорядоченной объемно-центрированной кубической решеткой типа CsCl и периодом 2,69-2,7Å. Эта фаза получается при реакциях: выделение из b-фазы () в интервале температур 605 - 870°С и концентраций 6 - 11%Ве — по линии FH; эвтектоидное превращение b-фазы () при температуре 605°С и концентрациях 1,5-11,5%Ве — AFG соответственно.

Ниже линии эвтектоидного равновесия (линия AFG на рис.1), в интервале концентраций бериллия 0,2-11,5% (интервал L-N на рис.1 соответственно) идет реакция выделения: , при которой из пересыщенной бериллием фазы a выделяется g-фаза с большим его содержанием.

         В системе имеются перитектическое (2,75 – 4,2% Be) и эвтектоидное (1,5 – 11,5% Be) равновесия, при 866 и 605°С соответственно, имеются фазовые превращения типа растворение-выделение, ввиду ограниченной растворимости Be в различных модификациях меди.

         Теперь рассмотрим превращения, происходящие конкретно в сплаве Cu + 2,3%Be (сплав №1 на рис.1).

         В сплаве 1 со снижением температуры с 1000 до 980°С (т. S) не происходит никаких превращений (область существования только жидкой фазы), дальше в интервале S-Q (980-875°С) идет кристаллизация из жидкости кристаллов a-фазы, при этом состав жидкости меняется по линии ликвидус, а кристаллов по солидус. Как видно из диаграммы, при этом и жидкость и кристаллическая фаза обогащаются Ве, судя из характера расположения этих линий, соответственно количество бериллия в центре кристалла и на его поверхности различное, т.е. существует ликвация Ве как в объеме сплава, так и по самой дендритной ячейке. В интервале температур Q-R (875-740°С) существует одна a-фаза, а после, при охлаждении примерно до 605°С (т. Y на рис.1), идет обеднение a-фазы бериллием по линии ВA и выделение b-фазы. При охлаждении ниже 605°С в выделявшемся доселе неупорядоченном твердом растворе замещения b при эвтектоидном превращении идет упорядочение — образование фазы g (b'): атомы меди располагаются преимущественно в узлах решетки, а атомы бериллия — в центре [1]. Хотя в реальном кристалле этот порядок точно не соблюдается: атомы меди могут занять места бериллия и наоборот. Рентгенограммы g (b') в системе Cu-Be выявляют линии сверхструктуры, которые отсутствуют у b-фазы. После прохождения эвтектоидной реакции () в сплаве находится три вида фаз: a-фаза, которая образовалась при кристаллизации, a-фаза, которая образовалась при эвтектоидной реакции из b-фазы, и g (b')-фаза, которая также образовалась при эвтектоидном превращении. При дальнейшем охлаждении в интервале 605-20°С идет также обеднение a-фазы бериллием по линии AL и выделение, дополнительно, g(b')-фазы.


2.2 Определение основных исходных данных.


         Как видно из диаграммы состояния, в сплаве 1 (Cu+2,3%Be) в твердом состоянии происходит 2-а фазовых превращения. Это растворение-выделение и эвтектоидное. Рассмотрим их:

·        при температурах, ниже 740°С (интервал R- U на рис.1) идут реакции выделения из a-фазы b и g-фазы:

;

·        при температуре 605°С (т. Y на рис.1) идет эвтектоидная реакция упорядочения b-фазы:

;

Из жидкости, в интервале температур 980-875°С (интервал S-Q на рис.1) идет реакция выделения кристаллов a-фазы:

                   .

И при температуре солидуса (т. Q) равной 875°С сплав полностью состоит из кристаллов a-фазы.

         Полученные в разделе данные сводим в таблицу:


Табл.1        Основные исходные данные по сплаву Cu+2,3%Be.

Тип фазового превращения

Температура фазового равновесия, °С

Примечания

Кристаллизация

980

Температура ликвидуса

Кристаллизация

875

Температура солидуса

Растворение-выделение

740

 

Эвтектоидное

605

 

 

2.3 Определение возможных видов структурной обработки.

 

         Рассмотрим возможные для этого сплава виды обработок из классов: термической (ТО), деформационно-термической (ДТО) и химико-термической (ХТО) обработок.

2.3.1 ТО.

         I) Отжиги I-го рода.

Все отжиги первого рода основаны на структурных превращениях в металле и идут вне зависимости от того, протекает ли в сплаве при обработке фазовые превращения, а следовательно потенциально возможны во всех металлах. Отжиги I рода бывают:

a)  гомогенизирующие — подвергаются слитки и заготовки с целью снижения дендритной или внутрикристаллитной ликвации, которая повышает склонность сплава, обрабатываемого давлением, к хрупкому излому, к анизотропии свойств и возникновению таких дефектов, как шиферность (слоистый излом) и флокены (тонкие внутренние трещины, наблюдаемые в изломе в виде белых овальных пятен);

b) рекристаллизационные — подвергаются холоднодеформированные заготовки и детали с целью: частичного сохранения наклепа (неполный рекристаллизационный отжиг), сохранения деформационной или создания собственной текстуры (текстурный рекристаллизационный отжиг), устранения текстуры, получения структурной сверх пластичности (многократная комбинация деформации и рекристаллизационного отжига), получения зерен требуемого размера и монокристаллов (градиентный рекристаллизационный отжиг), снятия наклепа и перевода неравноосных после деформации зерен в более устойчивую, с термодинамической точки зрения, равноосную форму;

c)  для снятия остаточных напряжений — подвергаются заготовки и детали, в которых в процессе предыдущих технологических операций, из-за неравномерного охлаждения, неоднородной пластической деформации и т.п. возникли остаточные напряжения (остаточные напряжения могут сниматься и при других видах отжигов).

Исходя из вышесказанного, можно сделать вывод — наш сплав может быть подвергнут любому из вышеприведенных видов отжигов I рода в случае, если исходные параметры состояния заготовки или детали, изготовленных из данного сплава, удовлетворяют условиям проведения соответствующей обработки, т.е.: для гомогенизирующего отжига исходная структура — литая, с выраженной дендритной ликвацией; для рекристаллизационного — холоднодеформированная, с большими степенями деформации; для снятия остаточных напряжений — наличие высоких остаточных напряжений, нежелательных при последующей обработке (в случае отсутствия других технологических операций в этой части технологической цепи, одним из эффектов которых является снятие остаточных напряжений) или использовании.


         II) Отжиги II-го рода.

Эти отжиги основаны на фазовых превращениях, происходящих в сплаве в твердом состоянии, поэтому вид возможных отжигов этого подкласса всецело зависит от вида фазовых превращений, происходящих в славе. Они должны обеспечивать фазовую перекристаллизацию сплава.

В зависимости от типа фазовых превращений в данном сплаве могут быть проведены:

                 a)     гетерогенизирующий отжиг — применяется в случае наличия в сплаве процесса выделения из матрицы другой фазы, вследствие изменения равновесной растворимости компонентов при понижении температуры. При этой обработке не происходит коренной ломки структуры по всему объему. Тип кристаллической решетки матричной фазы не меняется. Отжиг приводит к изменению концентрации компонентов в матричной фазе и к изменению количества, размера, а также формы частиц выделяющейся фазы.

                b)     отжиг с фазовой перекристаллизацией — возможен при наличии в сплаве полиморфного или эвтектоидного (включает полиморфное) превращения и приводит коренной перестройке структуры по всему объему сплава. Он используется для устранения текстуры и измельчения размера зерна.

Исходя из характеристик рассмотренных выше видов отжигов II-го рода, делаем вывод о возможности их применения к рассматриваемому нами сплаву, т.к. в нем присутствуют процессы как растворения-выделения, так и эвтектоидное.


III) Фазовые закалки.

Сущность фазовых закалок — перевод металла в метастабильное структурное состояние с использованием фазового превращения. Различают закалки с полиморфным превращением и без такового. Рассмотрим их:

a)  с полиморфным превращением — применяется при наличии в сплаве такового или эвтектоидного, которое включает в себя полиморфное. В случае прохождения этих превращений только по бездиффузионному механизму называются закалкой на мартенсит, если же допускается наличие диффузионного, то — на бейнит.

b) без полиморфного превращения — применяется при наличии в сплаве таких фазовых превращений как: растворение-выделение, порядок-беспорядок, гомогенизация- спиноидальный распад; и называются по названию получаемого после закалки состояния.

Из рассмотренных выше видов фазовых закалок, для нашего сплава применимы закалки как с полиморфным превращением, т.к. в нашем сплаве имеется эвтектоидное фазовое превращение (ФП), так и без полиморфного превращения с использованием такого ФП, как растворение-выделение, которое присутствует в сплаве. Фазовая закалка с ФП растворение-выделение называется закалкой на пересыщенный твердый раствор.


IV) Структурные закалки.

К структурным закалкам относят:

a)  вакансионную закалку — упрочнение сплава за счет фиксации большего количества вакансий, имеющееся при высоких температурах.

b) закалку для фиксации высокотемпературной морфологии сплава.

Эти виды закалок универсальны и могут быть применены к любому сплаву, поэтому подходят и для нашего.


V) Стабилизирующие обработки.

К стабилизирующим обработкам относят старение и отпуск. Применяются они обычно в тандеме с закалкой, т.к. в этом случае удается добиться наилучших результатов после обработки. Сущность этих видов обработки — распад метастабильного твердого раствора, с переходом сплава в более стабильное состояние, хотя обычно далекое от истинного равновесия. Процессы распада пересыщенного раствора в закаленном сплаве, так же как возврат и рекристаллизация, протекают самопроизвольно, с выделением тепла.

Для определения возможности проведения данных видов обработки, исходя из вышесказанного, следует заметить, что: старение применяется после закалки на пересыщенный твердый раствор, а отпуск — на мартенсит. Поэтому, т.к. эти два вида закалок возможны в данном сплаве, то и стабилизирующие обработки, следующие после них, так же возможны.


2.3.2 ДТО.

I) Термомеханические обработки.

Эти обработки обязательно используются в сплаве с ФП. И это ФП осуществляется в условиях повышенной концентрации дефектов кристаллического строения, обусловленной деформационным воздействии.

Сущность ВТМО состоит в том, что после горячей деформации и закалки получается пересыщенный твердый раствор с перекристаллизованной структурой, т.е. с повышенной плотностью несовершенств. Основное назначение НТМО — повышение прочностных свойств путем обычной закалки, а затем холодной деформации. Согласно диаграммы состояния сплава ( т.к. есть ФП растворение-выделение) и п.2.3.1 (данной работы) для сплава возможны следующие обработки:

Ø    ВТМО стареющего сплава;

Ø    НТМО стареющего сплава.

Т.е. при данных обработках мы в стабильную (при ВТМО) и метастабильную (при НТМО) фазу деформацией вводим повышенное количество дислокаций, а потом фиксируем их (заставляем наследовать их плотность) при последующей закалке.

II) Механико-термические обработки.

Эти же обработки используются в случае СП (полигонизация), которое обусловлено с одной стороны деформационным воздействием, а с другой стороны, соответственно, термообработкой. Для всех сплавов (а значит и для Cu+2,3%Be) не зависимо от того испытывают они ФП или нет возможно проведение данной обработки. При этом должно выполнятся одно условие: данный сплав при температуре холодной деформации должен находится в вязком, пластичном состоянии.


2.3.3 ХТО.

Химико-термическая обработка возможна т.к. на диаграмме состояния в необходимом интервале концентраций (2,3 - 2,7 % Ве) существуют указания на термодинамическое взаимодействие компонентов в твердом состоянии. Взаимодействие возможно если новое образование имеет меньшую свободную энергию, чем сумма отдельных состояний. Такими образованиями есть смеси твердого раствора и химического соединения: a + b и a + g. Данное насыщение обеспечивает хорошую защиту от газовой коррозии. Термическая обработка в цикле химико-термической — закалка на пересыщенный твердый раствор и последующее старение.

Страницы: 1, 2, 3, 4




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.