рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Особенности фазовых превращений в бинарных смесях

Рис.9. Изменепие

химического потенциала с составом при постоянных Т и р.


Рис.10. Изменение средней   свободной

энергии Гиббса (g = G /п) с составом при

постоянных Т и р.

Мольные доли x2и x2 компонента 2 в этих двух находящихся в равно­весии фазах могут быть рассчитаны следующим образом.

Так как µ является парциальной мольной величиной, g определяется соотношением

               (8)

Используя

получим

      (9)

Условием истинного равновесия по отношению к распределению компо­нента 2 между фазами является

или

     (10)

Аналогично, исходя из A1 = 0, найдем

      (11)

Подставляя   в    (10)    значения   х1 = 1 — х2  и  подучим

     (12)

Вычитая (11) из (12), видим, что в состоянии истинного равновесия

     (13)


Подставив это выражение в (12), получим

     (14)

Условия (13) и (14) также имеют простой геометрический смысл.

Значения х2, соответствующие двум находящимся в равновесии фазам, т. е. х2' и х2", таковы, что функции g и gимеют общую касательную АВ (см. рис.10). Легко показать, что отрезки AN и MB соответствуют со­стояниям метастабильного равновесия, склонным к превращению в двух­фазную систему.

В связи с

условиям (2) и (4), выполняющимся в крити­ческой точке, можно придать вид

             (15)



2. СВЯЗЬ МЕЖДУ УСЛОВИЯМИ МЕХАНИЧЕСКОЙ УСТОЙЧИВОСТИ И УСТОЙЧИВОСТИ ПО ОТНОШЕНИЮ К ДИФФУЗИИ В ДВОЙНЫХ СИСТЕМАХ


Выясним теперь значение условия механической устойчивости в двойных системах

     (16)

 Если ввести мольную свободную энергию  и мольный объем , неравенство (16) можно переписать в виде

     (17)


В то же время условием устойчивости но отношению к диффузии является (7), т. е.

     (18)

Придадим теперь двум последним неравенствам более удобный для нас вид.

Для этого прежде всего докажем, что

     (19)

Действительно, в соответствии с F = UTS и G = UTS + pV = HTS

   (20)

Но

    (20.1)

и значит

     (21)

Уравнение (19) немедленно следует из (20) и (20.1).

Продифференцировав (19) по x2 при постоянных T и p, получим

    (22)

Кроме того,

    (23)

Подставляя (23) в (22), мы можем теперь переписать (18) в форме

    (24)

Это условие устойчивости по отношению к диффузии должно выполняться одновременно с условием механической устойчивости (17). Для одновременного выполнения двух этих условий необходимо, чтобы

    (25)

Найдем теперь границу, отделяющую устойчивые состояния от неустойчивых, и покажем, что при переходе из области, в которой выполнены оба неравенства (17) и (24), в область, в которой выполняется только одно из них, первым нарушается неравенство (24).

Обращаясь к (24), мы видим, что нет причин, запрещающих одновременное выполнение условий

             (26)

В этом случае уравнением искомой границы было бы

     (27)

Если же предположить, что первым нарушается неравенство (17), т. е. уравнением границы является

     (28)

то, как легко убедиться, при переходе из области, в которой выполнены (17) и (24), к границе, определяемой (28), мы необходимо долж­ны перейти через область, в которой (24) оказывается нарушенным, так как отрицательный второй член превосходит первый при приближе­нии к нулю.

Таким образом, граница между устойчивыми и неустойчивыми состоя­ниями должна определяться (27), и на этой границе в общем случае

Искомая граничная поверхность в пространстве  определяет­ся, следовательно, уравнением

      (29)

Условие механической устойчивости поэтому не принимает никакого уча­стия в определении границы устойчивости, которая определяется только тем, что на граничной поверхности нарушается условие устойчивости по отношению к диффузии. Это является обоснованием метода, использовав­шегося нами в п.1.3 и п.1.4, в котором мы учитывали только условие устойчиво­сти по отношению к диффузии.

Рассмотрим теперь, каким образом условие механической устойчивости появляется при переходе к чистому веществу. Для этого запишем (29) в следующей эквивалентной форме:


      (30)

Если теперь устремить х2 к нулю, то, используя (19) и , легко убедиться, что

      (31)

В то же время  в общем случае остается конечной величиной. Вследствие этого (30) для чистого вещества снова приводит к тому, что граничным становится условие механической устойчивости

      (32)

в полном соответствии с уравнением

Диаграмма , которой мы уже пользовались, позволяет предста­вить эти результаты в наглядной форме (см. рис. 4. и 11). Кривая vaгkvaж  на рис.11 — это кривая насыщения, с которой мы встреча­лись на рис.4. Кривая AkB определяется уравнением (27); внутри нее расположены состояния, неустойчивые по отношению к диффузии. Ван дер Ваальсом эта кривая была названа спинодалъю. Критическая точка k лежит одновременно и на кривой насыщения и на спинодали.

Кривая АКВ определена условием

     (33)

и внутри ее не выполнены ни условие устойчивости по отношению к диф­фузии, ни условие механической устойчивости. Эта кривая не принимает участия в определении критической точки смеси. Очевидно, наконец, что при приближении к чистому веществу А спинодаль и кривая, определяемая уравнением (33), сближаются друг с другом, что находится в соот­ветствии с уравнениями (30) — (32).


3. РАССЛАИВАНИЕ В РЕГУЛЯРНЫХ РАСТВОРАХ


Для того чтобы прийти к более кон­кретным заключениям, необходимо знать зависимость коэффициентов ак­тивности от независимых переменных Т, р и х2.

Мы рассмотрим случай, при котором коэффициенты активности γ1и γ2 определяются соотношениями

      (34)

где α — постоянная величина,

αi – активность компонента i,

xiмольная доля компонента,

γi – коэффициент активности,

 Как будет показано ниже, такая зависимость коэффициентов активности от состава и температуры характерна для клас­са растворов, называемых строго регулярными растворами и исследован­ных в частности Гильдебрандом и Фаулером и Гуггенгеймом.

Физический смысл (34) будет рассмотрен ниже, пока же мы можем выяснить, к каким результатам приводит применение условий устойчиво­сти в данном частном случае. Аналогичные расчеты можно произвести, исходя из любых других уравнений для коэффициентов активности, уста­новленных экспериментально или выведенных теоретически.

При выполнении (34) с учетом что

 ,

где  - стандартный химический потенциал компонента i,

 - химический потенциал компонента i в чистом состоянии.

тогда химические потенциалы имеют форму

         (35)

      (36)

где функции  и  по определению равны химическим по­тенциалам чистых компонентов 1 и 2, находящихся в том же физическом состоянии, что и в растворе. Поэтому если система распадается на две

фазы, то   имеет одно и то же значение в обоих слоях, и это   же   справедливо по отношению .

Дифференцируя (35), получим

       (37)

Для того чтобы система находилась в равновесном состоянии, устой­чивом по отношению к разделению на две фазы, в соответствии с

    

необходимо и достаточно, чтобы

        (38)

Если величина  положительна и достаточно велика, то это нера­венство не может выполняться при всех концентрациях. Поскольку макси­мальным значением х2(1- х2) является 0,25, минимальное значение  равно 4. Поэтому для всех значений  должна существовать область концентраций, в которой (38) не выполняется. В этой области система уже не находится в состоянии устойчивого равно­весия и распадается на две фазы.

Прежде всего, используя уравнения (2), можно рассчитать поло­жение критической точки при данном давлении р. Если Тс и (x2)c — соот­ветственно критическая температура и критический состав, то

       (39)

         (40)

Откуда

                (41)

Итак, уравнения (34) для коэффициентов активности приводят к критической точке, соответствующей эквимолекулярной смеси двух ком­понентов. Кроме того, в этом случае мы всегда имеем дело с верхней кри­тической температурой растворения, так как при Т > Тс неравенство (38) всегда выполняется и фаза является устойчивой, независимо от ее состава.

Найдем теперь границу, отделяющую метастабильные состояния от неустойчивых. В соответствии с (6) и (37) уравнением этой грани­цы является

     (42)

или, после сочетания с (41),

       (43)

 Риг.11. -Диаграмма двойной смеси   вблизи   критической точки.




Рис.12. Расслоение   фаз   в регулярном растворе при посто­янном р.

Наконец, нам необходимо знать кривую сосуществования двух слоев в истинном равновесии. На этой кривой должны выполняться условия

   и            (44)

или (см. (35) и (36))

      (45)

Функции  взаимно уничтожаются, и если   т. е. если кривая симметрична, уравнения (45) становятся тождествен­ными. Поэтому два уравнения (45) эквивалентны одному независимо­му уравнению. Выбирая первое из этих уравнений и исключая , полу­чим

      (46)

 откуда (см.  (41))

            (47)

Положение критической точки и кривых (43) и (47) схематиче­ски изображено на рис.12.


4. ФАЗОВЫЕ ПЕРЕХОДЫ СМАЧИВАНИЯ И ПРЕДСМАЧИВАНИЯ В БИНАРНОЙ СИСТЕМЕ (МЕТАНОЛ-ГЕПТАН)


Фазовые переходы расслаивания в бинарных жидких смесях с ограниченной растворимостью сопровождаются возникновением поверхностных фаз и поверхностными фазовыми переходами. Вблизи критической температуры смешения поверхностное натяжение между жидкими фазами α и β стремится к нулю  и появляются условия

для поверхностных переходов, в частности, становится возможным образование смачивающего слоя одной из фаз, например фазы β, макроскопической толщины на межфазной поверхности αγ, если выполняется условие для межфазных натяжений , где γ – паровая или твердая фаза (стенки кюветы). Частным случаем являются переходы Канна между смачиванием и несмачиванием межфазной поверхности αγ фазой β, когда смачивающая фаза устойчива в объеме (переход полного смачивания) или когда бинарная система однородна и одна из фаз (например, β) только зарождается (переход предсмачивания). На фазовой диаграмме (рис.13) область переходов полного смачивания находится на отрезке DB кривой сосуществования (KC).

Рис.13. Фазовая диаграмма бинарной системы с линией переходов предсмачивания: ADBC – кривая сосуществования для объемных фаз,

DF – линия перехода предсмачивания,

1 и 2 – линии большой и малой адсорбции соответственно,

Тс – критическая температура смешения в объеме,

Тω – температура перехода полного смачивания,

ТSC – поверхностная критическая температура.

Линия фазовых переходов предсмачивания, называемых также переходами тонкий – толстый слой, изображается отрезком DF, при пересечении ее системой справа налево толстый слой зарождающейся фазы β изменяет структуру и становится тонким. Экспериментально было обнаружено несколько бинарных систем, но долгое время не удавалось экспериментально подтвердить существование перехода предсмачивания, сейчас уже имеется несколько работ на эту тему. Рассмотрим переход полного смачивания в системе метанол-гептан на границе со стенкой кюветы. Был разработан метод выявления перехода предсмачивания на этой межфазной границе, что позволяло определить расположение линии переходов предсмачивания относительно KC.

 Измерения проводились методом предельного угла на модифицированном рефрактометре Пульфриха у вертикальной стенки кюветы (рис.14). Бинарная система метанол-гептан критической концентрации помещалась в запаянную цилиндрическую кювету из молибденового стекла диаметром ~ 4см. Торцевые окна – полированные оптические пластинки толщиной 1,5мм. – изготовлялись из того же стекла и припаивались к торцам цилиндра. Кюветы заполнялась на ¾ объема. К плоскому торцевому окну кюветы с помощью иммерсионной жидкости прикреплялся измерительный стеклянный кубик.

 


Рис.14. Устройство для измерения пристеночных значений показателя преломления: 1 – цилиндрическая кювета из стекла, 2 – бинарная смесь, 3 – измерительный кубик с показателем преломления N, 4 – световой луч, 5’ и 5” – лучи, выходящие из верхней и нижней фазы соответственно.  


Световой луч от натриевой лампы (λ = 589,9 нм) падает в кювету вертикально вдоль окна, проходит через верхнюю и нижнюю фазы, преломляясь на границе с кубиком под соответствующими предельными углами. Преломленные лучи выходят из кубика через нижнюю горизонтальную грань. Здесь луч попадает в зрительную трубу  рефрактометра, угол выхода луча определяется по лимбу прибора. Отсчет нулевого угла производится по отражению от внешней вертикальной грани кубика с использованием автоколлимационной системы прибора. Кювета с бинарной смесью помещается в массивный латунный блок, по которому циркулирует вода из термостата. Блок укрепляется на месте кюветы в рефрактометре. Преломленные лучи выходят из кубика под углами φi и наблюдаются в виде ярких линий в поле зрения окуляра.

Показатели преломления соответствующих фаз определялись по формуле  , где N – показатель преломления измерительного кубика.

Измерения проводились при двух температурных режимах. При режиме 1 осуществлялось ступенчатое нагревание образца от 20 оС до критической температуры (Тс = 52,9 оС). При каждой температуре образец длительно термостатировался, после этого смесь перемешивалась путем встряхивания, и затем измерялся показатель преломления. Следующее измерение проводилось при большей температуре. При режиме 2 образец предварительно нагревался  до температуры выше критической, перемешивался до однородного состояния и затем ступенчатым образом охлаждался с термостатированием в точках наблюдения. В режиме 2 встряхивание перед измерением не требовалось, так как система сама достигает равновесного состояния. 

При температурном режиме 1 было замечено (рис.15) скачкообразное изменение свойств системы в узком интервале температур: от 44,2 до 44,3 оС, состоящее в исчезновении сигнала от верхней фазы.

Вся кривая температурной зависимости показателя преломления (ПП) может быть условно разделена на несколько областей. В области низких температур (20-44,2 оС) наблюдаются сигналы от обеих фаз. Вторая область (44,3-47,2 оС)начинается с исчезновения сигнала от верхней фазы в интервале 44,3-44,9 оС, она включает область нестабильности: заметен значительный разброс точек, при некоторых значениях температуры появляется сигнал от верхней фазы, который не воспроизводится при повторных измерениях.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.