рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Плазменное поверхностное упрочнение металлов

Скорости нагрева V ≈ 106 ºС\с, по мнению [1,15,19,20],являются предельными, так как интервал α → γ превращений достигает температуру плавления. Бездиффузионный механизм α → γ превращения наблюдается и в случае с ис­ходной мартенситной структурой. При нагреве со скоростьюV ≈ Vкр распада мар­тенсита не происходит, иα → γ превращение имеет характер обратного мартенситного превращения. По мнению [1,19,20] , температура превращения зависит от со­става сплава и может быть как выше, так и ниже равновесной температуры. Образовавшийся аустенит при обратном мартенситном превращение наследует от мар­тенсита дефектную структуру, что при последующей закалке приводит к повышению плотности дислокации и повышению твердости.

Особенностиα → γ превращения легированных сталей связаны с замедлени­ем в этих сталях диффузионных процессов, уменьшения температурного интервала γ - фазы и с понижением температуры мартенситного превращения аустенита. При нагреве легированных сталей роль бездиффузионного механизма α → γ превращения возрастает.

Однако уменьшение температурного интервала γ – фазы в условиях бы­строго нагрева характеризуется большей вероятностью оплавления поверхности.

При оплавлении, карбиды, входящие в состав легированных сталей, растворяются и образовавшийся аустенит насыщается легирующими элементами, и при последую­щем охлаждении не претерпевает фазового превращения.

Гомогенизация

 При традиционных методах упрочнения (использующих медленный нагрев) применяют изотермическую выдержку при достижении максимальной температуры закалки.

В результате такой выдержки происходит α → γ - превра­щение феррита, растворение карбидов с последующим распределением углерода и легирующих элементов [17].

Образующийся аустенит имеет постоянную по всему объему концентрацию атомов. Изменяя время выдержки можно в определенных пределах управлять степенью гомогенизации аустенита. При плазменном упрочнении аустенизация стали протекает в неизотермических условиях, поэтому процессы гомогенизации ограничены незначительным про­межутком времени пребывания металла в аустенитном состоянии

Отсутствие выдержки при максимальной температуре нагрева приводит к неравномерному рас­пределению углерода и других элементов в зерне аустенита.

Для сплавов с исходной ферритно-цементитной структурой вне зависимости от механизма α → γ - превращения, по мнению [15-22], частичное протекание процес­сов гомогенизации (для скоростных нагревов) является необходимым условием по­вышения твердости.

Согласно [17-19, 22] для диффузионного механизма образова­нии зародышей аустенита, общая скорость превращения зависит от диффузии угле­рода.

При α → γ - превращении по бездиффузионному механизму образования аустенита(без определенного насыщения его углеродом) возможно и он при быстром охлаждении возвращается к исходной ферритно-цементитной структуре (т.е. пересынщенного твердого раствора в железе не образуется) [28].

Поэтому, при описании фазовых переходов при плазменном упрочнении, важной задачей является установление количественной оценки диффузии углерода при неизотермических условиях.

При скоростном нагреве железоуглеродистых сплавов с мартенситной структурой происходит обратное мартенситное превраще­ние без заметного распределения углерода [17-20].

 По мнению [22], в этом случае необходимо оценить предельную скорость нагрева (для анализа диффузионных процессов), ниже которой происходит отпуск мартенсита.

Кроме того, необходима точная оценка критической скорости охлаждения аустенита для осуществления процессов закалки.


 Влияние скорости нагрева на величину зерна аустенита

 

Принято считать, что размер зерна обратно пропорционален скорости нагрева после печной закалки аустенитное зерно имеет примерно 7-9 баллов после за­калки ТВЧ (скорость нагрева 100-1000 ° С\с) зерно имеет балл 11-13. На рис. 2.4. показано изменение величины зерна с увеличениемскорости нагрева до темпера­туры Тзак для стали 45при плазменном упрочнении.

При скоростинагрева

выше 500° С\с незначительный

рост зерна наблюдается только в случае превышения температуры нагрева над температурой, принятой при обычной печной закал ке. Нагрев со скоростью свыше 1000^ °С\с приводит к смещению процесса образования аустенита в область высоких температур, и, как следствие этого, уменьшается концентрация углерода, необходимая для устойчивости зародыша. Скорость зарождения при этом резко увеличивается, что ограничивает

рост зерен. Используя сверхбыстрый нагрев(плазменнойструей(дугой), можно Рис. 2.4. Влияние температуры и скорости регулировать величину зерна аустенита к  нагрева на размер зерна аустенита d моменту начала стадии охлаждения. в стали 45.

1-500º С/с; 2-1000º С/с; 3-5000º С/с

 Влияние скорости нагрева на ускорение диффузионных процессов насыщения

 

Почти во всех случаях применения скоростного нагрева (лазерного, электронно-лучевого, плазменного и т.д.) отмечается ускорение процессов насыщения поверхностных слоев легирующими элементами [1,9.15,19,21, 23-26].

Однако, при­чины ускорения процессов химико-термической обработки (ХТО) металлов не рас­крываются.

 Ускорение диффузионных явлений при плазменной ХТО обусловлено особенностью фазовых превращений в железоуглеродистых сплавах при скоростном нагреве. Если при медленном нагреве аустенит образуется только в результате диф­фузионных процессов, то при плазменном нагреве возможно образование аустенита по бездиффузионному механизму. В доэвтектоидных сталях бездиффузионный процесс протекает на неоднородностях в ферритнойфазе - по границам зерен и блоков. Смещение фазовых превращений в область высоких температур оказывает существенное влияние на размер зерен аустенита, в момент окончания фазовых переходов. Уменьшение объема зерен и увеличение их числа приводит к возрастанию общей протяженности границ. Известно [27], что интенсивность диффузии вдоль границ и внутри зерен существенно различается. Скорость пограничной диффузии в 5-7 раз превосходит скорость диффузии по зерну [27]. Следовательно, в более мелкозернистом аустените, образующимся при плазменном нагреве и обладающим большей протяженностью границ, насыщение происходит значительно быстрее, чем в крупнозернистом аустените, образующимся при печном нагреве.

Высокая диффузионная активность мелкозернистого и мелкоблочного ау­стенита, образующегося при плазменном нагреве, усиливается наличием многочис­ленных источников вакансии, благоприятной дислокационной структурой и повы­шенной плотностью дислокации [14]. Это связано с тем, что границы зерен являют­ся основными источниками вакансий в металлах с плотноупакованной решеткой, а измельчение зерна приводит к увеличению концентрации вакансий [27]. Несовершенства структуры границ (дислокации, избыточная концентрация вакансии) явля­ется, по мнению [ 14, 18, 27,28], источником избыточной энергии, что облегчает пе­ренос диффундирующих атомов.

Наряду с особенностями превращений в железоуглеродистых сплавах при плазменном нагреве на интенсификацию процессов ХТО оказывает сильное влия­ние сам источник нагрева - плазменная струя (дуга). При плазменном нагреве (струей или дугой) азот, углерод, водород поглощаются металлом в количестве,превышающем их растворимость при тех ж температурах и давлениях, но в отсут­ствии плазменного нагрева [28, 29] . Высокая температура плазменной струи (дуги), где газ частично диссоциирован и ионизирован, вызывает отставание релаксацион­ных процессов от скорости снижения температуры газа у поверхности металла.

Следствием этого является взаимодействие с металлом газа (плазмы) в неравновес­ном, относительно его температуры состоянием. Сверхравновесное поглощение газа в некоторых случаях приводит к значительному перенасыщению металла газом и к стремлению выделиться из него, что приводит к пористости на поверхности метал­ла [24].

Важной особенностью плазменного нагрева является, также неоднородность температурного поля нагрева, свойственная всем процессам, использующим концентрированные источники нагрева. Отсюда усиление термодиффузионных процессов на границе металл-активная среда. Кроме того, использование плазмен­ной дуги позволяет ускорить диффузионные процессы за счет электронного тока (электротермический эффект).

 Таким образом, причины интенсификации процессов насыщения легирую­щими элементами при плазменном нагреве заключаются в следующем:

 - при плазменном нагреве образуется мелкозернистый и мелкоблочный аустенит (в который диффундирует тот или иной элемент), содержащий в се­бе большее количество дефектов структуры (границы зерен блоков, дислокации и т.д.), что значительно облегчает процесс диффузии на границе раздела металл-активная среда;

 - использование плазменной струи (дуги) позволяет создать лучшие условия для протекания поверхностных реакций, заключающихся в сверхравно­весномпоглощениигаза ивысокойактивностинасыщающейсреды (газовая, твердая, жидкая фаза );

 - резко сокращается время нагрева поверхности металла до температуры насыщения (доли секунд).

Охлаждение

При охлаждении аустенитной структуры возможно два типа γ→α -превращения: диффузионное и бездиффузионное. Прискорости охлаждения W‹W1 реализуется первый тип, а при W>W2 только второй тип. (Характерные зна­чения для доэвтектоидной стали W1 ≈50° С\с, эвтектоидных W ≈100º С\с.

 Для получения мартенсита в железоуглеродистых сплавах необходимо обес­печить скорость охлаждения выше критической, которая для большинства сталей со­ставляет 50-200 ° С\с [1. При плазменном упрочнении скорость охлаждения значи­тельно превышает критическую и составляет 102-105 ° С\с [9]. Таким образом, рас­пад аустенита происходит по бездиффузионному механизму с образованием мар­тенсита. Как уже отмечалось, при плазменном нагреве образуется неоднородный аустенит, и, как следствие этого, при охлаждении объемы с разной концентрацией уг­лерода будут закаливаться по-разному. Диапазон температур, в которых происходит мартенситное превращение, существенно увеличивается. Превращение малоуглеро­дистого аустенита происходит при температуре 350-420° С с образованием мелко­игольчатого мартенсита [15, 19, 22]. С ростом концентрации углерода температура мартенситного превращения снижается до 100° С с образованием пластинчатого мартенсита. Для охлаждения неоднородного аустенита требуются большие скорости ох­лаждения [19, 20, 22], по сравнению с однородным аустенитом. Это связано с тем, что повышение градиента концентрации углерода приводит к ускорению диффузии и облегчению распада аустенита.

 Однако, по мнению [9- 13], существуют оптимальные скорости охлаждения аустенита (102- 103 °С\с), которые при плазменном упрочнении увеличиваются, по сравнению с закалкой традиционными методами. При слишком больших скоростях охлаждения, свыше 105 ºС\с, повышается доля остаточного аустенита и возрастает вероятность образования трещин.

Таким образом, основными физическими особенностями плазменного по­верхностного упрочнения являются: увеличение температурных интервалов α→ γ и γ→α - превращений, доминирование бездиффузионных механизмов фазовых переходов, наследование дефектов и карбидной фазы исходной структуры,влияние состояния исходной структуры; влияние термоупругих1 и остаточных напряжений.


Термодеформационные процессы в железоуглеродистых сплавах при плазменном упрочнении


После плазменного упрочнения металлов в поверхностном слое возникают остаточные напряжения, появление которых обусловлено двумя основными причинами: термическими напряжениями при неоднородном температурном поле и структурными превращениями. Остаточные напряжения при поверхностном упроч­нении распределяются, по мнению [1, 9, 10, 12, 16, 24, 25], следующим образом: в поверхностном слое Хс (10-100 мкм) они носят сжимающий характер, а в более глу­боком слое Хр (0,3-3 мм) переходят в растягивающие напряжения и по мере углуб­ления в глубь металла уменьшаются до нуля, рис.2.6.


 

Рис.2.6. Схема распределения остаточных напряжений по глубине

упрочненного поверхностного слоя.

σс 9 σр – величина максимальных остаточных напряжений сжатия и растяжения;

хС9 хр- глубина залегания.


На характер распределения остаточных напряжений большое влияние ока­зывают параметры режимов упрочнения, химический состав упрочняемого материала, исходное состояние поверхностного слоя и т.д. Изменяя параметры режимов упрочнения, можно получить разную глубину закаленного слоя и различный харак­тер остаточных напряжений по глубине материала, рис.2.7.

Термоупругие напряжения, действующие в процессе охлаждения, сдвигают влево термокинетические кривые распада аустенита, что приводит к необходимости увеличения критических скоростей охлаждения.



Рис. 2.7. Распределение остаточных напряжений на стали 45 при различной глубине

закаленного слоя (плазменная закалка): 1 - 0,5 мм ; 2 – 1,0 мм ; 3 2 мм.


Эпюры остаточных напряжений на поверхности сталей показывают сильную неравномерность, рис.2.8. В центре упрочненной зоны (у=0) при мощности плаз­менной струи 1,5 кВт имеются незначительные напряжения растяжения. С увеличе­нием мощности плазменной струи до 2,5 кВт, характер распределения и знак оста­точных напряжений в центре упрочненной зоны (у— 0) изменяется. Это связано с тем, что с увеличением мощности плазменной струи, металл в зоне обработки нагре­вается до температуры выше фазовых превращений, на стадии охлаждения образуется мартенсит. Подобный характер изменений остаточных напряжений в зависимости от мощности получен при упрочнении плазменной струей на стали 45, рис. 2.9.

 На углеродистых сталях максимальные напряжения сжатия зафиксированы при упрочнении с оплавлением поверхностно Однако, дальнейшее увеличение мощ­ности приводит к снижению напряжения сжатия в центре упрочненной зоны, что связано с увеличением объема жидкой ванны и, как следствие этого, уменьшение скорости охлаждения. Увеличение мощности плазменной струи (дуги) приводит к существенному изменению тепловых процессов, фазовых и структурных превраще­ний при упрочнении, вследствие чего изменяются не только остаточные напряже­ния в центре упрочненной зоны, но и характер их распределения поперек зоны в направлении оси y. На рис. 2.10. показано распределение на поверхности стали У10, 9ХМФ в зависимости от мощности.




 

Рис. 2.10. Распределение остаточных напряжений на поверхности

сталей У10 (а) и 9ХФМ (б) при различной мощности

плазменной струи. 1.Р = 2.5 кВт; 2. Р = 3,5 кВт; 3. Р = 5,5 кВт /оплавление/


В работах [1,16, 32, 35] отмечалось, что значительное влияние на распреде­ление остаточных напряжений при поверхностном упрочнении оказывает скорость обработки.

 На рис. 2.11. доказано влияние скорости обработки сталей 20, 45, 40Х, 9ХМФ.

При небольших скоростях обработки в центре упрочненной зоны (с оплавлением) сталях 20, 45,40Х формируются растягивающие напряжения, а краям зоны оплавления - напряжения сжатия.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.