рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Расчет конического редуктора

Расчет конического редуктора

Министерство образования и науки Российской Федерации.

Федеральное агентство по образованию.

Государственное образовательное учреждение высшего профессионального образования.

 

Самарский государственный технический университет.

 

Кафедра: «Прикладная механика»





Курсовой проект по механике









Студент 2 – ХТ – 2

Руководитель: к. т. н., доцент

 




Cамара,

2004 г.

Техническое задание №65.


Коническая передача.

Частота вращения вала электродвигателя:.

Вращающий момент на выходном валу редуктора:.

Частота вращения выходного вала: .

Cрок службы редуктора в годах: .

Коэффициент загрузки редуктора в течение года: .

Коэффициент загрузки редуктора в течение суток:.



Содержание

 

1. Введение_________________________________________________________4

2. Кинематический и силовой расчёт привода__________________________4

2.1 Определение частот вращения валов редуктора______________________4

2.2. Расчёт чисел зубьев колёс________________________________________4

2.3. Определение фактического передаточного отношения_______________5

2.4. Определение КПД редуктора_____________________________________5

2.5. Определение номинальных нагрузочных моментов на каждом валу, схема механизма___________________________________________________5

2.6. Расчёт потребной мощности и выбор электродвигателя, его размеры___5

3. Выбор материалов и расчёт допускаемых напряжений_________________7

3.1. Определение твёрдости материалов, выбор материала для зубчатого колеса____________________________________________________________7

3.2. Расчет допускаемых напряжений _________________________________7

3.3. Допускаемые напряжения на контактную выносливость______________7

3.4. Допускаемые напряжения на изгибную выносливость________________8

4. Проектный и проверочный расчёт передачи__________________________8

4.1. Вычисление предварительного делительного диаметра шестерни______8

4.2. Вычисление предварительного модуля передачи и уточнение его по ГОСТу___________________________________________________________8

4.3. Расчёт геометрических параметров передачи_______________________8

4.4. Проверочный расчёт передачи___________________________________9

4.5. Усилия в зацеплении___________________________________________9

5. Проектный расчёт вала и выбор подшипников ______________________12

6. Эскизная компоновка и расчёт элементов конструкции_______________12

6.1. Расчёт зубчатого колеса________________________________________12

6.2. Расчёт элементов корпуса______________________________________13

6.3. Расчёт мазеудерживающих колец_______________________________13

6.4. Расчёт крышки подшипников__________________________________13

6.5. Выполнение компоновочного чертежа__________________________13

7. Подбор и проверочный расчёт шпоночных соединений _______________14

8. Проверочный расчёт вала на усталостную выносливость______________15

9. Проверочный расчёт подшипников выходного вала на долговечность___18

10. Подбор и расчет соединительной муфты___________________________19

11. Смазывание редуктора__________________________________________19

12. Сборка и регулировка основных узлов редуктора___________________20

13. Список используемой литературы________________________________22

14. Приложения__________________________________________________23

Введение.


Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников или устройства для охлаждения.

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т.д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.).

Конические редукторы применяют для передачи движения между валами, оси которых пересекаются обычно под углом 90. Передачи с углами, отличными от 90 , встречаются редко.

Наиболее распространённый тип конического редуктора - редуктор с вертикально расположенным тихоходным валом. Возможно исполнение редуктора с вертикально расположенным быстроходным валом; в этом случае привод осуществляется от фланцевого электродвигателя

Передаточное число u одноступенчатых конических редукторов с прямозубыми колёсами, как правило, не выше 3; в редких случаях u = 4.При косых или криволинейных зубьях u = 5 (в виде исключения u = 6.3).

У редукторов с коническими прямозубыми колёсами допускаемая окружная скорость (по делительной окружности среднего диаметра) v ≤ 5 м/с. При более высоких скоростях рекомендуют применять конические колёса с круговыми зубьями, обеспечивающими более плавное зацепление и большую несущую способность.

2                   Кинематический и силовой расчет привода.

 

2.1            Определение частот вращения валов редуктора:


.

Частота вращения первого (входного) вала: .

Частота вращения второго (выходного) вала:.


2.2            Расчёт чисел зубьев передач.


Расчётное число зубьев шестерни  определяют в зависимости от величины передаточного отношения передачи:

Значение  округляют до целого числа  по правилам математики: .

Расчётное число зубьев колеса , необходимое для реализации передаточного числа , определяют по зависимости: .

Значение  округляют до целого числа :.


2.3            Определение фактического передаточного отношения:


.


2.4            Определение КПД редуктора.


Для конического редуктора .

Вращающий (нагрузочный) момент на выходном валу редуктора:.

На входном валу: .


2.5            Определение номинальных нагрузочных моментов на каждом валу, схема механизма.

 

Мощность на выходном валу редуктора, кВт:

 кВт, где:

 - вращающий момент выходного вала,

 - частота вращения выходного вала.

Расчетная мощность электродвигателя:

,

Данному  соответствует мощность=5,5 кВт, т.е. электродвигатель типа 112М4.


Габаритные размеры, мм

Установочные и присоединительные размеры, мм

372

452

310

190

32

32

80

70

140

190

12


3                    Выбор материалов и расчет допускаемых напряжений для конических передач.

 

3.1            Определение твёрдости материалов, выбор материала для зубчатого колеса.


Марку стали можно выбрать в зависимости от твердости . Ориентировочно твердость стали можно определить по зависимости:

, где:

- вращающий момент на входном валу редуктора, Нм;

- диаметр вала электродвигателя, мм.

Величину HB округляем до целого числа (в большую сторону), кратного 10: HB=200. По таблице марка стали: сталь 45, вид термообработки – улучшение, предел прочности , предел текучести .


3.2            Расчет допускаемых напряжений.


Исходя из условий эксплуатации и видов повреждений зубчатых колес рассчитывают допускаемые напряжения на контактную  и изгибную  выносливость для наиболее слабого звена в передаче.

Таким звеном для конических передач является шестерня, испытывающая наибольшее количество циклов нагружения в течение заданного срока службы привода L.

Для определения фактического числа циклов нагружения ведущей шестерни за весь период эксплуатации  необходимо знать суммарное время работы передачи в часах , определяемое по формуле:

, где:

 - срок службы редуктора в годах,

 - коэффициент загрузки редуктора в течение года,

 - коэффициент загрузки редуктора в течение суток.

 определяется из формулы:

, где:

- частота вращения вала шестерни.


3.3            Допускаемые напряжения на контактную выносливость.


Допускаемые напряжения на контактную выносливость  определяют по формуле:

МПа, где:

- предел контактной выносливости, МПа; определяют по зависимости:

МПа;

 - коэффициент запаса контактной прочности;

 - коэффициент долговечности; рассчитывают по зависимости:

, здесь  - базовое число циклов:

Диапазон значений  находится в пределах: . Т.к. рассчитанный коэффициент , то принимаем .

3.4            Допускаемые напряжения на изгибную выносливость.


Допускаемые напряжения на изгибную выносливость  определяют по формуле:

МПа, где:

- предел изгибной выносливости, МПа; определяют в зависимости от твердости материала HB:

МПа,

 - коэффициент запаса изгибной прочности;

 - коэффициент долговечности; рассчитывают по зависимости:

, здесь  - базовое число циклов.

Диапазон значений  находится в пределах: . Т.к. рассчитанный коэффициент , то принимаем .

4                    Проектный и проверочный расчёт передачи.

 

4.1            Вычисление предварительного делительного диаметра шестерни.

 

Рассчитываем основные геометрические параметры из условия контактно- усталостной прочности активных поверхностей зубьев (с точностью 0,01 мм – для линейных величин, 0,0001 град – для угловых величин):

Внешний делительный диаметр шестерни (предварительное значение) , мм:

мм, где:

 - коэффициент нагрузки, учитывающий неравномерность ее распределения; в курсовом проектировании с достаточной степенью точности можно принять .


4.2            Вычисление предварительного модуля передачи и уточнение его по ГОСТу:


.

По расчетной величине  принимаем ближайшее большее стандартное значение модуля: ,


4.3            Расчёт геометрических параметров передачи

4.3.1      Внешнее конусное расстояние , мм:

.

4.3.2      Диаметр внешней делительной окружности шестерни  и колеса , мм:

,

.

4.3.3      Диаметр внешней окружности вершин зубьев шестерни  и колеса , мм:

,

, где:

 и  - углы делительных конусов, град., равные:

,

.

4.3.4      Расчетная ширина  зацепления колес, мм:

.

Расчетное значение  округляем до целого числа b в большую сторону. Ширина зубчатых колес принимается равной:

.

4.3.5      Внешняя высота зуба , мм:

.

4.3.6      Внешняя высота головки зуба , мм:

Для исключения возможных ошибок в вычислениях при проектном расчете проверяют выполнение условия контактной выносливости:

МПа.

Условие выполняется, значит, расчет верен.

4.4            Проверочный расчет передачи.

 

Определяем рабочие изгибные напряжения, которые должны быть не больше допускаемых, по зависимости:

,

МПа, где:

 - коэффициент нагрузки при изгибе, учитывающий неравномерность ее распределения и динамичный характер; в курсовом проектировании для колес 7-ой степени точности изготовления можно принять

 - коэффициент формы зубьев шестерни, определяется по зависимости:

Условие изгибной прочности выполняется, расчет верен.


4.5            Усилия в зацеплении.

 

Для последующих расчетов по оценке работоспособности валов и подшипников определяют силы, возникающие в зацеплении при передаче вращающего момента и действующие на шестерню (обозначены индексом 1) и колесо (обозначены индексом 2):

·                   окружная сила , Н:

Н,

·                   радиальная  и осевая силы , Н:

Н,

Н, где:

 - угол зацепления.

Страницы: 1, 2




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.