рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Разработка интегральных микросхем


Таблица 2.8 - Основные кислотные травители для кремния

[9, стр. 78]

Тип травителя

Обьемный состав

Применение

Время травления

СР-8



СР-4А






Травитель Уайта




Травитель Деша

HNO3:HF=2:1



HNO3:HF:

:CH2COOH=5:3:5





HNO3:HF=3:1




HNO3:HF:

:CH2COOH=3:1:8

Химическое полирование


Химическое полирование и выявление границ p-n-переходов


Химическое полирование плоскостей(111)


Медленное химическое полирование любых плоскостей

1…2 мин



2…3 мин






15 с




1…16 ч


Таблица 2.9 - Характеристики некоторых фоторезистов[9, стр. 104]


Марка фоторезиста

Разрешающая способность при толщине слоя 1 мкм

Кислотостойкость по плотности дефектов, мм-2, не более

Стойкость к проявителю, с

Кинематическая вязкость в состоянии поставки

 при 20°С

ФП-307

ФП-309

ФП-330

ФП-333

ФП-334

ФП-383

ФП-РН-7

ФП-617

ФП-617П

ФП-626

ФН-106

ФН-108

500

400

400

500

400

400

400

500

500

500

200

400


0,35

0,5

0,75

0,2

0,2

0,2

0,2

0,05

0,005

0,005

0,4

0,25

90

-

60

180

600

180

40

30

40

30

-

-

6

6

5,9

6

4,5

6…2,5

2…2,5

21…26

8…15

20,5…25,5

7

3,5



Таблица 2.10 - Предельная растворимость примесей в кремнии[9, стр. 189]

Примесь

Предельная растворимость, см-2

Температура, °С

Алюминий

Бор

Фосфор

Галлий

Индий

Сурьма

Мышьяк

Золото

1019…1020

5*1020

1,3*1021

4*1019

1019

6*1019

2*1021

1017

1150

1200

1150

1250

1300

1300

1150

1300

Одним из важных моментов в разработке микросхемы является ее корпус. При выборе корпуса руководствуются конструктивно - технологическими характеристиками. Огромное влияние оказывает диапазон рабочих температур, механическая прочность, климатические условия, в котором, как предполагается, будет работать микросхема и т.д. Классификация корпусов ИС помещена в таблице 2.11. Конструктивно – технологические характеристики некоторых корпусов ИС помещены в таблице 2.12 .

При выборе корпуса внимание было акцентировано на универсальность и простоту монтажа схемы.


Кроме  того, пластмассовые прямоугольные корпуса обладают рядом преимуществ перед остальными типами корпусов, регламентируемых ГОСТом 17-467-79. А именно: небольшая высота корпуса, позволяющая уменьшить объем радиоэлектронного узла: возможность создания корпуса с большим числом выводов; позволяют применять различные методы их присоединения к печатной плате.

Таблица 2.11 - Классификация корпусов ИС по ГОСТ 17-467-79

[7, стр 301]

Тип

Подтип

Форма корпуса

Расположение выводов

1

11

Прямоугольная

Выводы расположены в пределах проекции тела корпуса

перпендикулярно, в один ряд

12

Перпендикулярно в два ряда

13

Перпендикулярно в три и более ряда

14

Перпендикулярно по контуру прямоугольника

2

21

Прямоугольная

За пределами проекции тела корпуса

Перпендикулярно в два ряда

22

Перпендикулярно в четыре ряда в шахматном порядке

3

31

Круглая

В пределах проекции тела корпуса

Перпендикулярно по одной окружности

32

Овальная

В пределах проекции тела корпуса

33

Круглая

За пределами проекции тела корпуса

4

41

Прямоугольная

За пределами проекции тела корпуса

Параллельно по двум противоположным сторонам

42

Параллельно по четырем сторонам

5

51

Прямоугольная

В пределах проекции тела корпуса

Металлизированные контактные площадки по периметру корпуса

Таблица 2.12 - Конструктивно – технологические характеристики некоторых корпусов ИС[7, стр. 301]


Условное обозначение корпуса

Вариант исполнения

Масса, г

Размеры корпуса, мм

Размеры монтажной площадки, мм

1202.14(151.14-1)

1203.15(151.15-1)

1203.15(151.15-3)

1210.29(157.29-1)

2103.8(201.8-1)

2102.14(201.14-2)

2102.14(201.14-8)

2103.16(201.16-8)

2204.48(244.48-1)

3101.8(301.8-2)

3107.12(301.12-1)

3204.10(311.10-1)

4104.14(401.14-2)

4110.16(402.16-1)

4122.40-2

4138.42-2

МС

МС

МС

МС

МК

П

К

К

К

МС

МС

МС

МС

МК

МК

МК


1,6

2,0

1,6

14

1,8

1,2

1,55

1,6

4,15

1,3

3,

20

1,0

1,0

3,0

4,8


19,5*14,5*4,9

19,5*14,5*5

19,5*14,5*4

39*29*5

19*7,8*3,2

19*7,2*3,2

19,5*7,2*5,5

19*7,2*3,2

31*16,5*4

9,5; H=4.6

9,5; H=4.6

39*25*7

10*6.6*2

12*9.5*2.5

25.75*12.75*3

36*24*3.5

16*8

17*8.3

5.6*6.2

34*20

5*3

5*3

5*3

5*3

8*8

3*3

3*3

5*5

4.9*2

5.5*3.5

6.2*5.2

10.7*8.3


Примечание: К – керамический, МК – металлокерамический, МС -  металлостеклянный, П – пластмассовый.

Низкая стоимость пластмассового корпуса определяется: дешевизной применяемого материала и технологии изготовления корпуса, в которой операции формирования монолитного корпуса и герметизации ИМС совмещены; возможностью автоматизации сборки с использованием плоских выводов в виде рамок; возможностью осуществления групповой технологии герметизации, например литьевого прессования с помощью многоместных прессформ или метода заливки эпоксидным компаундом в многоместные литьевые формы. При использовании пластмассового корпуса монтаж кристалла производится на технологическую контактную рамку, представляющую собой пластину с выштампованными внешними выводами, которые в процессе монтажа остаются прикрепленные к контуру рамки. Более длинный вывод заканчивается площадкой, находящейся в центре системы выводов, на нее припаивается кристалл. После монтажа термокомпрессионной сваркой проволочных перемычек  между контактными площадками кристалла и выводами корпуса осуществляется предварительная защита собранного узла ( особенно проволочных перемычек) каплей компаунда холодного отвердевания. Когда отвердевание компаунда завершено, узел направляют на заливку под давлением во временной форме компаундом горячего отвердевания. После герметизации технологическая рамка отделяется в штампе, а выводы формуются соответственно типоразмеру изготавливаемого пластмассового корпуса.

Выводы в технологических рамках целесообразно выполнять в отрезках ленты длиной до 250 мм на несколько микросхем. Это облегчает автоматизацию процесса монтажа, а также обеспечивает загрузку многоместных форм для заливки компаундом. Для крепления кремниевых кристаллов на основание корпуса наиболее широкое распространение получил метод пайки эвтектическим сплавом золота (98% Au) с кремнием (2% Si) c температурой плавления 370оС. Такой сплав образуется в месте соприкосновения кремния с золотым покрытием основания корпуса благодаря взаимной диффузии золота и кремния. Более дешевым методом является  клейка кремниевых кристаллов на основание корпуса(например клеем ВК-9 ) [8].

Для присоединения выводов к контактным площадкам кремниевых ИМС и внешним выводам корпуса прибора используется метод УЗ-сварки. Метод состоит в присоединении выводов в виде тонких металлических проволочек (диаметр 10…30мкм) к контактным площадкам при одновременном воздействии инструмента, совершающего высокочастотные колебания. Для изготовления проволоки применяются пластические металлы, обычно алюминий и золото. В качестве материала проволоки  выбираем более дешевый алюминий. Достоинства такой сварки – соединение без применения флюса и припоев металлов в твёрдом состоянии при сравнительно низких температурах и малой их деформации 10…30% как на воздухе, так и в атмосфере защитного газа.

3. Конструктивные расчеты

3.1 Расчет параметров транзисторов


Таблица  3.1.1  Исходные параметры транзистора КТ805А


Наименование параметра

значение

Единица измерения

hб –глубина залегания р-n перехода база-коллектор

см

hэ - глубина залегания эмиттерного р-n перехода

0.8

см

hк- толщина коллекторной области

см

- концентрация донорной примеси в эмиттерной области на поверхности

- концентрация донорной примеси в эмиттерной области у эмиттерного перехода

- поверхностная концентрация акцепторов в базе

- концентрация донорной примеси в коллекторе

- удельное объемное сопротивление коллекторной области

- удельное поверхностное сопротивление пассивной области базы

ð

- удельное поверхностное сопротивление активной области базы

ð

- диффузионная длина дырок в эмиттере

см

- коэффициент диффузии дырок в эмиттере

- диффузионная длина электронов в базе

см

- коэффициент диффузии электронов в базе

- диффузионная длина дырок в коллекторе

см

- коэффициент диффузии дырок в коллекторе

- концентрация носителей зарядов в собственном полупроводнике

- относительная диэлектрическая проницаемость полупроводника

-


Основные параметры дрейфового транзистора при малых уровнях токов определяются по формулам, которые помещены ниже. Размеры транзистора определяются, исходя из особенностей конструкции и величины Δ (обычно принимают Δ=3…4 мкм).

Ширина эмиттера Rэ=3Δ, площадь эмиттера Sэ=300 мкм2

 Длина эмиттера:

                                ;                                                            (1)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.