рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Синтез ацетилферроцена

Синтез ацетилферроцена

  МОСКОВСКИЙ ОРДЕНА ЛЕНИНА, ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В. ЛОМОНОСОВА



Химический факультет

 
Кафедра неорганической химии


Синтез ацетилферроцена

 

 

Курсовая работа

студента 108 группы

И.Ю.Ф.

Научный руководитель:

в.н.с. д.х.н. Милаева Е.Р.   

Преподаватель:

с.н.с. к.х.н. Один И.Н.

 

 

 

Москва, 2004

СОДЕРЖАНИЕ


1. Введение……………………..………………………………………………3

2. Литературный обзор……...………………………………………………..4

   2.1 Строение ферроцена………………………………………...……………4

   2.2 Реакции электрофильного замещения ферроцена……………………...6

   2.3 Сравнение электрофильности ферроценов и бензола……………….…8

   2.4 Ацилирование ферроцена………………………………….…………….9

   2.5 Окисление ферроценов…………………………………….…………...10

3. Экспериментальная часть……………………………………………….13

   3.1. Получение ацетилферроцена…………………………………………..13

   3.2. Разделение ферроцена и ацетилферроцена………………………...…13

4. Обсуждение результатов…………………………………………………15

   4.1. Ацилирование ферроцена……………………………………………...15

   4.2. Сравнение ОВ способностей ферроцена и ацетилферроцена……….16

   4.3.  Разделение ферроцена и его производных…………………………...17

5. Выводы…………………………………………………………………..…19

6. Литература…………………………………………………………………20

1. Введение


Ферроцен (дициклопентадиенилжелезо) - металлорганическое соединение железа с пентагональной антипризматической «сэндвичевой» структурой. Благодаря своему высокосимметричному сэндвичевому строению, ферроцен обладает рядом интересных химических и физических свойств. Это соединение широко применяется в химии, биологии и фармакологии, как в промышленности, так и в научных исследованиях.

Для ферроценов характерны три главных типа превращений: замещение водородов пятичленных колец, окисление по атому железа и разрыв связи железа с циклопентадиенильными кольцами.

Процесс окисления ферроцена по атому железа обратим и протекает без заметных изменений в геометрии катион-радикальной частицы по сравнению с исходной нейтральной молекулой. Однако заместители в циклопентадиенильных кольцах оказывают влияние на окислительно-востановительные способности атома железа: электроноакцепторные заместители резко снижают его окислительную способность.

Сам ферроцен и его производные хорошо растворимы в неполярных растворителях и практически нерастворимы в воде, соли же ферроцений-катиона в воде, напротив, растворяются.

На основе двух вышеуказанных свойств можно предложить простой, но эффективный способ разделения ферроцена и его производных с электроноакцепторными заместителями в циклопентадиенальных кольцах. В данной работе этот метод был использован на примере разделения ферроцена и моноацетилферроцена.

2.         Литературный обзор

2.1.                 Строение ферроцена


Первая публикация о ферроцене появилась в 1951 году, и на сегодняшний день ферроцен - наиболее изученный органический   p-комплекс переходного металла. Ферроцен и его производные нашли широкое применение в науке и технике: на их основе синтезируют термостойкие полимерные материалы, они обладают антидетонационной активностью, их применяют для катализа химических реакций, а также используют в биологии и фармакологии (для лечения железодиффецитной анемии). Такая обширность исследований прикладных свойств ферроценов обусловлена их свойствами - необычайно высокой для металлоорганического производного термической стабильностью, низкой токсичностью, способностью обратимо образовывать соединения с различной степенью окисления железа при сохранении молекулярной структуры и богатством химических превращений.

Ферроцен представляет собой оранжевые кристаллы с температурой плавления 173°С и кипения 249°С, плотностью 1.49 г/см3, растворимые в органических растворителях и нерастворимые в воде и возгоняющиеся при атмосферном давлении.

Сэндвичевая структура дициклопентадиенилжелеза была установлена в 1952 году на основании магнитных и спектральных  свойств, а так же по рентгеноструктурным данным.

Молекула ферроцена неполярна, дипольный момент её практически равен нулю (0.05 D) и обладает диамагнетическими свойствами. ИК спектры показывают, что в соединении присутствуют С-Н связи только одного типа. Одинаковая ненасыщенность каждого атома углерода в циклопентадиенил-анионе показывает, что две таких частицы могут образовывать симметричные связи с ионом железа [1].   

Данные неэмпирических расчётов приводят к распределению зарядов вида Fed+(C5H5)2d- в ферроцене. В зависимости от выбранного метода расчёта величина заряда лежит в пределах d = 0.6¸1.4. Из расчётов получается, что при переходе от ферроцена к ферроцению эффективный заряд на атоме железа меняется менее чем на 0.1, в связи глубокой перестройкой молекулярных орбиталей. Становится понятным хорошо известный для ферроцена экспериментальный факт, что нейтральная молекула и ион имеют практически одну и ту же величину изомерных сдвигов в мёссбауэровских спектрах [2]. Если предположить, что изомерный сдвиг является мерой ковалентности, то ферроцен и его производные относятся к наиболее ковалентным соединениям     железа.

В кристалле молекула ферроцена находится в антипризматической заторможенной конформации с точечной группой симметрии D5d. Основные расстояния, найденные при исследовании молекулы в кристалле (в Å): Fe-C 2.000-2.075; C-C 1.40-1.41 [3]. При повышенной температуре и в газовой фазе ферроцен может существовать как в заторможенной, так и в заслонённой конформации, но данные полученные методом дифракции электронов не позволяет сделать выбор между ними. С равным успехом рассматриваются конформации с симметрией D5h и D¥h. Разность энергий D5h и D5d конформаций для ферроцена в газовой фазе оценивается ~1.1ккал/моль. Полагают, что в твёрдом состоянии величина этого барьера тоже невелика и заторможенная конформация в основном стабилизирована взаимодействиями в кристаллической решётке [4].  

Долгое время по причине низкого качества кристаллов не удавалось провести достаточно хорошее рентгеноструктурное исследование солей ферроцениевого катиона. По данным исследования с тетрахлорферрат-анионом катион ферроцения в отличие от ферроцена имеет заслонённую конформацию; при этом несколько увеличивается расстояние между плоскостями колец (т.е. растут расстояния Fe-C). Расстояния (в Å) соответственно равны: Fe-C 2.08, C-C 1.40 [5].

 Именно строение ферроцена как высокосимметричного «сэндвича» обуславливает его поразительную стабильность и устойчивость по сравнению с другими металлоорганическими соединениями железа: он выдерживает без разрушения нагревание до температуры 470°С, устойчив к действию воздуха, горячей концентрированной соляной кислоты и 10% водного раствора щёлочи [1].


2.2 Реакции электрофильного замещения ферроцена


При реакции замещения водородов циклопентадиенильных колец и последующих превращениях заместителей не происходит разрыва связей железа с атомами углерода. Нет другого металлоорганического соединения, для которого были бы осуществлены столь многочисленные превращения без разрыва или изменения природы связи углерода с металлом. Ферроценильная группа ведёт себя как устойчивый радикал, переходящий без изменения из соединения в соединение, т.е. так, как представляли себе на заре развития органической химии создатели «теории радикалов».  

В молекуле ферроцена имеется два типа нуклеофильных центров – атомы углерода и атом железа. В настоящее время до конца не выяснено, какой из этих нуклеофильных центров является местом первоначальной атаки. Высказано предположение, что при электрофильном замещении в металлоценах существенную роль играет атом металла. Эта идея легла в основу представлений о механизме электрофильного замещения в ферроцене, согласно которым первая стадия замещения представляет собой быстрое обратимое присоединение электрофила к атому железа. На второй, медленной стадии происходит перемещение электрофила в кольцо, приводящее к эндоциклическому s–комплексу, которому авторы приписывают структуру, аналогичную структуре s–комплексов бензольного ряда. На третьей стадии быстро отщепляется протон и образуется замещённый ферроцен [6].

Существенной особенностью предложенного механизма является подход электрофила к пятичленному кольцу со стороны атома железа. Исследование внутримолекулярного ацилирования эпимерной пары кислот, в которых из-за их пространственного строения затруднены в первом случае эндо-, а во втором – экзо-циклическая электрофильная атака, показало, что обе кислоты под действием ангидрида трифторуксусной кислоты циклизуются в гомоциклический кетон, причём скорость циклизации экзо-кислоты несколько больше, чем скорость циклизации эндо-кислоты [7].

В статьях последних лет предполагается, что жёсткие электрофилы атакуют ферроцен со стороны одного из циклопентадиенальных колец (экзо-атака), а мягкие электрофилы должны сначала образовывать прекомплексы с атомом металла, а затем атаковать пятичленные кольца (эндо-атака) [8].

Водороды С5Н5-колец в мягких условиях замещаются на различные группы. Осуществлено ацилироване, формилирование, алкилирование, сульфирование, диалкил амино метилирование, металлирование и аррилирование ферроцена. Эти реакции идут легче, чем с бензолом. При электрофильном замещении заменяется сначала один водородный атом, а потом второй в другом С5Н5-кольце.

Для перечисленных выше электрофильных реакций (кроме ациллирования), а так же для ариллирования найдены условия при которых с препаративными выходами получаются моно- или гетнроаннулярные дизамещённые ферроцены. Гомоаннулярные производные Z2C5H3FeС5Н5 и тризамещённые Z2C5H3FeС5Н4Z образуются в незначительном количестве.

Разнообразные производные ферроцена получены как путём прямой замены водорода, так и при последующих превращениях заместителей. Эти превращения в основном аналогичны реакциям соединений бензольного ряда.

 

2.3 Сравнение электрофильности ферроценов и бензола.


Несмеяновым и его сотрудниками было показано, что по общему характеру реакционной способности ферроцен является ярким примером небензоидной ароматической системы [9]. Для того, чтобы охарактеризовать относительную электрофильность этого ряда, они воспользовались простейшей реакцией электрофильного замещения – реакцией изотопного обмена водорода, а также сопоставили константы скорости, полученные для ферроцена и его производных, с константами скорости изотопного обмена водорода производных бензола. Наиболее удобным донором дейтерия оказалась трифтордейтероуксусная  кислота, обладающая высокой функцией кислотности (Н0 = -3.03) и являющаяся хорошим растворителем для многих органических веществ. Была изучена кинетика водородного обмена ферроцена, ацетилферроцена, диацетилферроцена и толуола трифтордейтероуксусной  кислоте при температуре 25°С, используя в качестве растворителя бензол. В расчёт принимались атомы водорода только углеводородных колец.

Если принять константу скорости водородного обмена толуола за единицу, то исследуемые соединения по их убывающей способности к электрофильному замещению можно расположить в следующем порядке:

Ферроцен > ацетилферроцен > 1,1’-диацетилферроцен > толуол
  5333          5.0                  2.6               1

Таким образом, способность к реакциям электрофильного замещения у ферроцена оказалась более чем на три порядка выше, чем у толуола. Введение ацетильной группы в ядро ферроцена понижает скорость водородного обмена циклопенпадиенальных колец в 1000 раз по сравнению с незамещённым ферроценом. Бензол в этих условиях в реакцию водородного замещения не вступает.

Поэтому замещение водорода в ферроцене при действии электрофильных реагентов происходит в более мягких условиях, нежели в бензоле.

Влияние заместителей в циклопентадиенальном кольце на замещение других водородов ферроценильной группы аналогично влиянию в бензольном ряду: электроноакцепторные заместители затрудняют реакции электрофильного замещения, а электронодонорные заместители облегчают эти реакции. Однако граница между электронодонорными и электроноакецепторными заместителями иная, чем в бензольном ряду. Это обусловлено большей, чем у бензола, нуклеофильностью ферроцена, а также различиями таутомерного и индуктивного эффектов заместителей в ферроценовом и бензольном ядрах. Правила ориентации при электрофильном замещении менее чётки, чем в бензольном ряду.  

 

2.4 Ацилирование ферроцена


Ацилирование циклопентадиенилжелеза и его производных осуществлено многими реагентами. Первый ацил был синтезирован при взаимодействии ферроцена с ацетилхлоридом в присутствии хлористого алюминия [10]. Эта реакция дала толчок для изучения ароматических свойств данной системы, а также дала ферроцену его название.

При ацилировании ферроцена получают моно- и ди-ацилферроцены в зависимости от соотношения реагентов, характера взятого катализатора и его количества.

Моноацилферроцены получаются при ацилировании ферроцена галогенангидридами или ангидридами карбоновых кислот в присутствии хлористого алюминия. Однако наряду с монокетоном всегда образуется дикетон.

 Если хлористый алюминий взят в избытке, то образуется только дикетон даже при эквимольных количествах ферроцена и галогенангидрида. Также при избытке хлорида алюминия (III) ферроцен может протонироваться выделяющимся хлористым водородом и осаждается в виде комплекса, который не ацилируется [11]:

C10H10Fe + AlCl3 + HCl  (C10H11Fe)+( AlCl4)-

Моноацилирование ферроцена лучше проводить в присутствии более мягких, чем хлористый алюминий, катализаторов (хлорное олово, фосфорная кислота).

Моноацетилферроцен получается при действии на ферроцен силикоангидрида уксусной кислоты и четырёххлористого олова:


4(C5H5)2Fe + Si(OCOMe)4  4C5H5FeC5H4COMe + Si(OH)4

Уксусный ангидрид ацетилирует ферроцен до моноацетилферроцена в присутствии фосфорной кислоты [12], трёхфтористого бора [13] или MgBr2×Et2O [14].

Описано моноацилирование ферроценаацилхлоридами в присутствии Mo(CO)6 как катализотора [15]:

(C5H5)2Fe + RCOCl  C5H5FeC5H4COR

Моноацилирование ферроцена - это основной метод синтеза ацилферроценов, являющихся исходными веществами для приготовления разнообразных производных ферроцена. 

 

2.5 Окисление ферроценов


Ферроцен и многие его производные легко окисляются по атому железа, давая соответствующие однозарядные катион-радикальные частицы: ферроцений и замещённые ферроцении. Процесс окисления обратим и протекает без заметных изменений в геометрии катион-радикальной частицы по сравнению с исходной нейтральной молекулой. Спектральные, а также структурные исследования позволяют считать, что как в кристаллах, так и в растворах ионы ферроцения присутствуют как независимые частицы, взаимодействующие с противоионами и молекулами среды на ван-дер-ваальсовых расстояниях. Такое положение не является неожиданным, так как атом железа в системе ферроцен-ферроцений является координационно насыщенным, а электрон при окислении ферроцена в ферроцений удаляется с невсязывающей молекулярной орбитали (преимущественно d-типа).

Страницы: 1, 2




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.