рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Теоретические основы математических и инструментальных методов экономики

Развитие Ф. а. происходило параллельно с развитием современной теоретической физики, при этом выяснилось, что язык Ф. а. наиболее адекватно отражает закономерности квантовой механики, квантовой теории поля и т.п. В свою очередь эти физические теории оказали существенное влияние на проблематику и методы Ф. а.

1. Линейные пространства. Базис

Одно из основных понятий современной математики - линейное пространство.

Пусть L - некоторое множество объектов произвольной природы, а C - множество комплексных чисел. Множество L называют линейным пространством, если на нем определены две операции: 1) операция сложения любых двух элементов этого множества и 2) операция умножения элементов этого множества на комплексное число, причем эти операции удовлетворяют некоторым естественным аксиомам. Более точно:

Определение. Множество L называется линейным пространством над полем комплексных чисел C, если

  1. каждой паре элементов x, y из этого пространства поставлен в соответствие элемент z этого пространства, называемый суммой элементов x и y (обозначение: );
  2. каждому элементу x из L и каждому комплексному числу поставлен в соответствие элемент из L, называемый произведением и x (и обозначаемый или x);
  3. указанные операции удовлетворяют следующим аксиомам:
  4. для любых ,
  5. для любых ,
  6. существует "нулевой" элемент , такой, что для любого ,
  7. для каждого существует "противоположный" ему элемент , такой, что ,
  8. для любого ,
  9. для любого и любых ,
  10. для любого и любых ,
  11. для любого и любых .

Подчеркнем, что перечисленные аксиомы являются естественным обобщением хорошо известных свойств сложения и умножения чисел, сложения векторов и их умножения на число и т.д.

Иногда рассматривают линейное пространство не над полем комплексных, а над полем действительных чисел R (т.е. вместо операции умножения на комплексные числа рассматривается операция умножения на действительные числа). Аксиомы линейного пространства при этом не меняются.

Приведем некоторые типичные примеры линейных пространств.

Пример 1. Линейное пространство векторов на плоскости (или в трехмерном пространстве) с обычными операциями сложения векторов и умножения вектора на действительное число. Нулевым элементом является нулевой вектор.

Пример 2. Линейное пространство всевозможных последовательностей комплексных чисел с операциями

.

Нулевой элемент - последовательность (0, 0, ..., 0, ...).

Пусть теперь - некоторые элементы линейного пространства L, а - произвольные комплексные (или действительные) числа. Элемент пространства L, равный , называется линейной комбинацией элементов .

Определение. Система (набор) элементов пространства L называется линейно независимой, если линейная комбинация равна нулевому элементу пространства только в случае .

Иными словами, система называется линейно независимой, если из равенства следует, что .

Определение. Система элементов пространства L называется линейно зависимой, если равенство выполнено при некотором наборе констант , хотя бы одна из которых отлична от нуля.

Таким образом, система называется линейно зависимой, если она не является линейно независимой.

Определение. Линейное пространство имеет размерность n (или, коротко, n-мерно), если в нем найдется n линейно независимых элементов, но любые (n+1) элемент линейно зависимы. Линейное пространство называется бесконечномерным, если в нем можно указать любое наперед заданное число линейно независимых элементов.

Определение. Система элементов линейного пространства называется базисом этого пространства, если любой элемент этого пространства можно единственным образом представить в виде линейной комбинации элементов данной системы.

Как мы убедились, в n-мерном пространстве любая линейно независимая система из n элементов образует базис.

Определение. Множество M называется метрическим пространством, если каждым двум элементам x, y этого множества поставлено в соответствие действительное число, обозначаемое и называемое расстоянием между элементами x и y, причем выполнены следующие аксиомы:

  1. для любых , причем в том и только в том случае, когда ;
  2. для любых ;
  3. для любых .

Если x, y - два фиксированных элемента множества M, то есть действительное число, однако, полагая x и y равными всевозможным элементам множества M, получим, что является функцией двух переменных x, y. Эта функция называется метрикой данного пространства.

Определение. Линейное пространство называется нормированным, если каждому элементу x этого пространства поставлено в соответствие действительное число (норма x ), причем выполнены следующие аксиомы:

  1. для любого x, причем тогда и только тогда, когда ;
  2. для любого x и любого комплексного ;
  3. для любых x, y из данного пространства.

Для линейных пространств над полем действительных чисел также вводится понятие нормированного пространства с теми же аксиомами.

Неравенство, фигурирующее в третьей аксиоме, называется неравенством Минковского.

Простейшими примерами нормированных пространств могут служить множества действительных чисел R и комплексных чисел C, где в качестве нормы числа рассматривается его модуль, а также пространство векторов на плоскости (или в пространстве) с нормой, равной длине вектора.

В пространстве непрерывных функций на (действительном или комплексном) норму можно ввести, например, следующими способами:

, .

Отметим теперь следующий важный факт. В любом линейном нормированном пространстве можно ввести метрику следующим образом:

При этом выполнение первой аксиомы метрического пространства следует из первой аксиомы нормированного пространства. Выполнение второй аксиомы также очевидно:

.

Наконец, выполнение третьей аксиомы метрического пространства следует из неравенства Минковского:

Итак, любое линейное нормированное пространство можно сделать метрическим пространством указанным выше естественным способом (так, указанные нами нормы в пространстве непрерывных функций порождают соответственно равномерную и среднеквадратичную метрику, т.е. порождают пространства и соответственно). Обратное утверждение, вообще говоря, неверно: не в любом метрическом пространстве можно ввести норму, поскольку понятие нормы вводится лишь в линейном пространстве, а метрическое пространство может не быть наделено линейной структурой. Однако, если метрическое пространство наделено линейной структурой (является линейным пространством), то его всегда можно сделать нормированным, введя норму

Пусть  -- вещественное -мерное пространство, в котором задан базис . Тогда векторы и из задаются своими координатами:

Скалярное произведение векторов, обозначаеся оно обычно , задается формулой

(18.3)



В отличие от обычного трехмерного пространства, где с помощью транспортира и линейки можно измерить угол между векторами и длину вектора, в -мерном пространстве ни угол между векторами, ни длину вектора измерить невозможно (как можно, например, измерить длину многочлена или угол между многочленами?). Поэтому ортонормированным в -мерном пространстве называется тот базис, в котором скалярное произведение вычисляется по формуле (18.3).

Если ,  -- координатные столбцы векторов и , то скалярное произведение можно задать формулой

Предоставляем читателю самостоятельно убедиться в совпадении этой формулы с формулой (18.3)

Определение 18.5   Вещественное линейное пространство, в котором задано скалярное произведение называется евклидовым пространством.         

В трехмерном пространстве с помощью склярного произведения определялся угол между векторами. В евклидовом пространстве тоже можно определить угол между векторами. Но угол в -мерном пространстве не имеет существенного значения, кроме одного случая. В трехмерном проcтранстве два вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю.

Определение 18.6   Два вектора евклидова пространства называются ортогональными, если их скалярное произведение равно нулю.

 Определение 18.7   Комплексное линейное пространство, в котором введено скалярное произведение, называется унитарным пространством.         

В унитарном пространстве модуль вектора и условие ортогональности вводятся с помощью скалярного произведения так же, как в евклидовом пространстве. В координатной записи

Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики.

  Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т.н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности

  x = (x1, x2,..., xn,...)

  такие, что ряд x21 + x22 +... + х2n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом:

  x + y = (x1 + y1,..., xn + yn,...),

  lx = (lx1, lx2, ..., lxn,...)/

  Для любых векторов х, y Î l2 формула

  (x, y) = x1y1 + x2y2 + ... +xnyn + ...

  определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число

 

  Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| £ ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||хn—х|| ® 0 при n ® ¥. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула

 

  где 0 £ j £ p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т.е. последовательность хn, удовлетворяющая условию ||хп—хm||® 0 при n, m ® ¥) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т.е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы

  e1 = (1, 0, 0,...), e2 = (0, 1, 0,...),...

  При этом для любого вектора x из l2 имеет место разложение

  x = x1e1 + x2e2 +...     (1)

  по системе {en}.

Операторы (общие понятия). Функционалы. Пусть X, Y — линейные пространства; отображение A: X ® Y называется линейным, если для x, у Î X, l, m Î ,

где x1,..., xn и (Ax)1,..., (Ax) n — координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L2 (а, b) в него же оператор

   

(где K (t, s) — ограниченная функция — ядро А) — непрерывен, в то время как определённый на подпространстве C1(a, b) Ì L2(a, b) оператор дифференцирования

    

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

Линейный функционал, обобщение понятия линейной формы на линейные пространства. Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:

  1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),

  где х и у — любые элементы из Е, a и b — числа;

  2) f(x) непрерывна.

  Непрерывность f равносильна требованию, чтобы  было ограничено в Е; выражение  называют нормой f и обозначают .

  В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой  Л. ф. являются, например, выражения:

  ,

  f2[((t)] = ((t0), a ( t0 ( b.

  В гильбертовом пространстве Н Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.

  Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.

  Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство , если определить естественным образом сложение Л. ф. и умножение их на числа. Пространство  называют сопряжённым к ; это пространство играет большую роль при изучении Е.

  С понятием Л. ф. связано понятие слабой сходимости. Последовательность {xn} элементов линейного нормированного пространства называют слабо сходящейся к элементу х, если

 

Моделирование как метод научного познания. Понятия модели и моделирования. Элементы и этапы процесса моделирования. Виды моделирования. Особенности математического моделирования экономических объектов. Производственно-технологический и социально-экономический уровни экономико-математического моделирования. Особенности экономических наблюдений и измерений. Случайность и неопределенность в экономико-математическом моделировании. Проверка адекватности моделей.

Моделирование в научных исследованиях  стало  применяться еще в  глубокой  древности  и постепенно захватывало все новые области научных знаний:  техническое  конструирование,  строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки.  Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в.  Однако методология моделирования долгое время развивалась независимо отдельными науками.  Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться  роль  моделирования как универсального метода научного познания.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.