рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Трение

В отличие от испытаний смазочных материалов в условиях эксплуатации и на стендах лабораторные испытания не требуют больших затрат времени, они в большей мере позволяют изменять основной параметр, оказывающий влияние на трибологические характеристики смазочных материалов. Условия испытания отличаются от действительных в реальных машинах, однако преимущества лабораторных испытаний способствуют их широкому применению, особенно для разработки новых присадок и смазочных композиций.

Самыми распространенными машинами являются прибор «вращающийся ролик – частичный вкладыш», машина Олмен – Виланд, машина Фалекс, машина Шкода – Савина, машина SAE, четырех шариковые машины трения.

Косвенными методами являются изучение физико-химических свойств систем: определение краевого угла смачивания, поверхностного натяжения, коллоидной стабильности систем, контактной разности потенциалов, электродного потенциала, измерения теплоты адсорбции [3,6].














Экспериментальная часть

Оборудование и реактивы

При исследовании физико-химических и трибологических свойств минеральных масел с антифрикционными добавками использовали следующие реактивы и оборудование:

1 Графит

2 Дисульфид молибдена

3 Масло И-20А

4 Лаурилсульфат натрия

5 Торсионные весы с чашечкой

6 Стакан химический объемом 1, 0,5, 0,2, 0,1, 0,05 дм3

7 Мешалка с нагревательным элементом

8 Секундомер

9 Линейка

10 Ареометры

11 Весы технические

12 Весы аналитические

13 Бюретка

14 Термометр

15 Воронка

16 Цилиндр мерный объемом

17 Штатив

18 Муфельная печь

19 Тигель фарфоровый

20 Двухкоординатная машина трения

21 Ультразвуковая ванна Sindy Eltrosonic Ultracleaner

22 Спирт

23 Машина трения SRV – III Test System

24 Криостат HAAKE Phoenix II P1 С75Р

25 Персональный компьютер

26 Дистиллированная вода

27 Образцы для испытания из стали 40Х13

28 Держатель-ножницы

2.2 Исследование физико-химических свойств масел с антифрикционными добавками на основе графита и дисульфида молибдена

2.2.1 Определение дисперсности графита и дисульфида молибдена


Дисперсность системы, величина обратная размеру частиц, одна из важнейших физико-химических величин, оказывающая влияние на несколько параметров в системе: коллоидную стабильность, адсорбцию твердых частиц.   

Коллоидная стабильность – величина, показывающая свойство не выделять жидкое масло (основы) в течение длительного времени. Расслоение смазочного материала способствует когезии частиц твердой фазы, при этом значительно снижаются первоначальные свойства и смазка становится не пригодной к использованию. Коллоидная стабильность характерна только для смазочных материалов с нерастворимыми в масле антифрикционными добавками.

Скорость адсорбции прямопропорциональна удельной площади частиц, следовательно чем выше дисперность частиц, тем образование прочной модифицирующей пленки происходит быстрее, а значит процессы износа и изнашивания будут происходит медленнее.

Для определения дисперсности и скорости оседания частиц мы использовали метод седиментационного анализа. Метод позволяет определить распределение частиц по размерам и соответствен­но подсчитать их удельную поверхность. Седиментационный ме­тод анализа дисперсности в гравитационном поле применим для анализа микрогетерогенных в интервале от 1 до 100 мкм, которому соответствуют суспензии, эмульсии, порошки.

Принцип седиментационного метода анализа дисперсности состоит в измерении скорости оседания частиц, обычно в жид­кой среде. Для этого с помощью средств измерения сначала измеряют зависимость массы осевшего осад­ка от времени, строят график этой зависимости, называемой кривой седиментации, по которому затем определяют все необ­ходимые характеристики дисперсной систем [10,12,15,16,17].

При анализе результатов измерений: построенных кривых распределения, определяют время осаждения частиц отдельных фракций полидисперс­ных систем, по уравнениям рассчитывают скорости их осаждения и соответствующие им размеры частиц.

,

где r – радиус частиц, H – высота столба жидкости, h - вязкость системы,

g - ускорение свободного падения, t – время, r - плотность твердой фазы,

rо - плотность жидкой фазы.

Размер частицы дисперсной фазы обычно характеризуют радиусом частицы, реже объемом или площадью ее поверхно­сти. Радиус однозначно определяется только, для частиц сферической формы. Для частиц неправильной формы - условная величина и его значение зависит от экспериментальной формы.

По результатам проведенных экспериментов были построены кривые седиментации (См. рис х-у в приложении), определено процентное соотношение отдельных фракций, построены дифференциальные кривые распределения (рис. х,y в приложении).

Анализируя кривые распределения можно приближенно говорить о преобладании частиц одной из фракций в системе, размеры частиц и скорости оседания которой приведены в таблице 1.


Таблица 1. Результаты седиментационного анализа суспензий.

Добавка

Растворитель

Радиус, м

Скорость

оседания, м/c

Графит

Вода

11,11х10-6

3,36х10-5

Графит

Масло

24,13х10-6

5,09х10-6

Дисульфид молибдена

Вода

2,06х10-6

3,38х10-6

Дисульфид молибдена

Масло

8,76х10-6

2,02х10-6


Радиус основной фракции графита, как в воде, так и масле больше чем радиус частиц дисульфида молибдена. Соответственно и скорости оседания частиц у графита выше, чем скорости оседания частиц у дисульфида молибдена.

Следовательно, коллоидная система масло – дисульфид молибдена более устойчива, чем суспензия масло – графит. Дисульфид молибдена благодаря меньшему радиусу частиц будет лучше адсорбироваться, взаимодействовать с поверхностью.


2.2.2 Определение поверхностного натяжения

Поверхностное натяжение это величина, которую можно представить либо силой, действующей на единицу длины границы раздела фаз и обуславливающей сокращение поверхности жидкости, либо работой, совершаемой при образовании новой поверхности. Связь поверхностного натяжения с адсорбцией доказаны через уравнения состояния, в которых чем ниже поверхностная энергия, тем выше адсорбционное взаимодействие, что положительно влияет при модификации поверхности антифрикционными добавками. Соответственно, чем ниже поверхностное натяжение на границе раздела фаз, тем выше адгезия. При всех плюсах низких значения поверхностного натяжения обнаруживается существенный недостаток, а именно высокие значения растекания смазочного материала, что приводит к большому расходу смазочного материала. Для решения данной проблемы возможно использования дополнительного смазочного материала, барьерной смазки, которая обладает большими значениями поверхностного натяжения и создающая энергетический барьер на пути миграции масла, например на торцах подшипников. Однако нужно следить, чтобы барьерная смазка не попадала в узел трения во избежании заклинивания, образования задиров и повреждения целостности барьера, препятствующего растеканию смазки.  

Поверхностное натяжение определяют различными способами, в данной работе используется относительный вариант метода, когда одна из жидкостей (дистиллированная вода), поверхностное натяжение которой при данной температуре точно известно, выбирается в качестве стандартной. Расчет поверхностного натяжения исследуемой жидкости производят по формуле:

,

где σo, ρo, no - поверхностное натяжение, плотность, число капель для дистиллированной воды; σ, ρ, n - соответствующие величины для исследуемого раствора.

         Сталагмометр представляет собой либо стеклянную трубку с расширением посередине и капилляром в нижней части; расширенная часть ограничена двумя метками, либо бюретку. По результатам эксперимента строят зависимости поверхностного натяжения от концентрации добавки и температуры[10, 12,15,16,18].

Рис. 5. Кривые зависимости поверхностного натяжения от температуры суспензии графита в масле.

Рис. 6. Кривые зависимости поверхностного натяжения от температуры суспензии дисульфида молибдена в масле.

Исходя из графиков видно, что выполняется зависимость понижения поверхностного натяжения с увеличением температуры, как для графита, так и для дисульфида молибдена. Выполняется зависимость понижения поверхностного натяжения с увеличением концентрации добавки для графита, однако для дисульфида молибдена это закон не выполняется. Это можно объяснить повышением плотности суспензии с увеличением концентрации добавки, это наблюдается у обоих материалов, однако у дисульфида молибдена это более выражено.

2.2.3 Оценка термической стабильности

Термическая стабильность – способность веществ, противостоять изменениям при тепловом воздействии.

В рабочих условиях смазочные материалы подвергаются воздействию кислорода воздуха при повышенных температурах и каталитическом влиянии материала смазываемых частей механизмов. В этих условиях все углеводородные компоненты масла, смолистые вещества, а также антифрикционные добавки, за исключением графита, в той или иной степени могут вступать в реакции окислению, а при отсутствии кислорода деструкции, рекомбинации, полимеризации. Наиболее быстро и глубоко протекают всевозможные процессы на сильно нагретых от 200 до 300 оС деталях поршневой группы двигателей внутреннего сгорания и воздушных компрессоров, при этом за счет трения и неравномерности нагрева температура в отдельных участках поверхностей может доходить до температуры более 300 оС.

Из рассмотренного механизма видно, что на поверхности трения будет образовываться слой графита или дисульфида молибдена, которые будут в первую очередь подвергаться действию высоких температур. При этом по данным [Г,П,П] в высокотемпературных узлах графит будет устойчив при температуже ниже 1100 оС, а дисульфид молибдена начнет окисляться при температуре 350 оС. Поэтому было необходимо хотя бы качественно проанализировать термоокислительную стабильность MоS2.

Термоокислительную стабильность определяют различными методами: в аппарате Папок (ГОСТ 23175-78), метод ВТИ (ГОСТ 981-75). Однако в связи с особенностями системы, где основную тепловую нагрузку принимает антифрикционная добавка решено отказаться от стандартных методов изучение характеристики и применить методику прокаливания присадок.

Анализируемую пробу прокаливают при заданной температуре на железных или медных пластинках (при высоких температурах и количественной оценке в тигле). При качественной оценке смотрят изменения физических свойств веществ с течением времени, при количественном с помощью методов количественного химического анализа определяют количество вещества вступившего в реакцию.

В связи с невозможностью при окислении полного поглощения сернистого газа и образования оксидов дисульфида молибдена в нестехиометрическом соотношении было принято решение отказать от количественной оценки термоокислительно стабильности.

Для качественной оценки мы использовали навески не более 0,1 г дисульфида молибдена равномерно распределенные толщиной до 0,1 мм тиглю. В ходе работы установлено, что 3 из 4 проб в течение часа подвергаются полному окислению при температуре в 350 оС, при этом не полное окисление 4 пробы лишь свидетельствует о неравномерности прогрева в муфельной печи.


2.3 Исследование трибологических свойств систем масло-графит и масло-дисульфид молибдена

Трибологические испытания проводили в два этапа: предварительные, проведенные на двухкоординатной машине трения, и заключительные с моделированием процессов, происходящих в узлах механизмов на многофункционально машине трения SRV.

2.3.1 Испытания смазок на двухкоординатной машине трения

Для предварительных трибологических испытаний была выбрана двухкоординатная машина трения, разработанная и запатентованная ведущими научными сотрудниками Института прикладной механики УрО РАН: Тарасовым В.В., Чуркиным А.В., Черепановым И.С. [22], которая позволяет проводить широкий круг трибологических и коррозионных испытаний на плоских поверхностях материалов.

Сущность работы машины заключается в том, что индентор сферической или иной формы, находящийся под действие нормальной нагрузки перемещают относительно поверхности исследуемого образца по траектории (см. рис. х),

 Рис. х. Схема точечного контакта двухкоординатной машины трения


выбираемой из априорной информации (при ее отсутствии предпочтение отдают круговой траектории). В процессе перемещения измеряют компоненты полного вектора, по которому судят о главном векторе тангенциальных сил, который при возвратно-поступательном движении индентора по образцу определяется как отношение возникающей силы трения к силе нагружения, и розетке анизотропии поверхностных физико-механических или фрикционных свойствах. Анизотропия трения – зависимость силы трения от направления взаимного перемещения двух или более тел [24]. При это она чрезвычайно важна в исследовании модификаторов трения, которые преобразуют поверхность к приближенно изотропной.

Рис.х. Анизотропа трения


Испытания проводили в двух режимах: в течение 10 секунд при движении вдоль направления обработки образца с ходом 10 мм и при движении по круговой траектории в течение 50 секунд с радиусом окружности 5 мм.

Испытания проведены при средней нагрузке 400 грамм, комнатной температуре, зафиксированном инденторе. Смазочный материал наносили на исследуемую поверхность объемом от 0,5 до 1,0 мл. Перед проведением каждого эксперимента рабочие образцы очищали спиртом в специальной сверхзвуковой ванне, затем сушили потоком воздуха. Расчеты провели на вычислительной машине модели AMD Atlon™ 64 processor 3000+ 1800 МГц, 1,50 Гб ОЗУ. По результатам расчетов построили анизотропы трения (Рис. в приложении х-х) и графики зависимости коэффициента трения от концентрации добавки.

 

Рис.9. Кривые зависимости коэффициента трения от концентрации добавки

1 – графит, 2 – дисульфид молибдена




Рис.9. Кривая зависимости минимальных значений коэффициента трения

 от условий проведения эксперимента

1 – Сухое трение, 2 – И-20А, 3 - И-20А+2,5% MoS2, 4 - И-20А+5,0% MoS2,

5 - И-20А+7,5% MoS2, 6 - И-20А+10,0% MoS2.




Рис.10. Кривая зависимости максимальных значений коэффициента трения

от условий проведения эксперимента

1 – Сухое трение, 2 – И-20А, 3 - И-20А+2,5% MoS2, 4 - И-20А+5,0% MoS2,

5 - И-20А+7,5% MoS2, 6 - И-20А+10,0% MoS2.



3.2.2 Испытания смазок на многофункциональной машине трения SRVIII Test System


Машина модели SRV предназначена для оценки антифрикционных свойств материалов, гальванических покрытий с возможностью использования многообразных схем испытаний для моделирования различных видов трения.

Страницы: 1, 2, 3




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.