рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыEnglish language for technical colleges

The torque-converter type of transmission provides an unlimited number of gear ratios with no shifting of gears. The torque converter is a hydraulic mechanism using engine power to drive a pump, which impels streams of oil against the blades of a turbine. The turbine is connected to the drive shaft and causes it to rotate.

Both Hydra-Matic and torque-converter systems are controlled by a selector lever on the steering column, which provides also for reverse and sometimes for emergency-low gears.

The Running Gear

The running gear of the car includes the wheel-suspension system, the stabilizers, and the wheels and tyres. The frame of the car may be considered the integrating member of the running gear. It is attached to the rear axle and to the front wheels by springs. These springs, along with the axles, the control and support arms, and the shock absorbers, constitute the wheel-suspension system. In modern cars the front wheels are independently suspended from the frame in a manner that permits either wheel to change its plane without appreciably affecting the other. This type of front-wheel suspension is known popularly as independent suspension. The stabilizers consist of spring-steel bars, connected between the shock-absorber arms by levers, to decrease body roll and improve steerability.

The Control System

Steering is controlled by a hand wheel, mounted on an inclined column and attached to a steering tube inside the column. The other end of the tube is connected to the steering gear, which is designed to provide maximum ease of operation. Power steering, adapted for passenger cars in the early 1950s, is generally a hydraulic mechanism used as a booster to reduce the effort of steering.

A car has two sets of brakes: the hand or emergency brake and the foot brake. The emergency brake generally operates on the rear wheels only. The foot brake in modern cars is always of the four-wheel type, operating on all wheels. Hydraulic brakes on cars and hydraulic vacuum, air, or power brakes on lorries apply the braking force to the wheels with much less force on the brake pedal than is required with ordinary mechanical brakes. The wheel brakes are generally of the internally expanding type, in which a convex strip of material is forced against a concave steel brake drum.

10. TWO-STROKE AND DIESEL ENGINES

Most diesels are also four-stroke engines. The first or suction stroke draws air, but no fuel, into the combustion chamber through an intake valve. On the second or compression stroke the air is compressed to a small fraction of its former volume and is heated to approximately 440°C by this compression. At the end of the compression stroke vaporised fuel is injected into the combustion chamber and burns instantly because of the high temperature of the air in the chamber. Some diesels have auxiliary electrical ignition systems to ignite the fuel when the engine starts and until it warms up. This combustion drives the piston back on the third or power stroke of the cycle. The fourth stroke is an exhaust stroke.

The efficiency of the diesel engine is greater than that of any petrol engine and in actual engines today is slightly over 40 per cent. Diesels are in general slow-speed engines with crankshaft speeds of 100 to 750 revolutions per minute (rpm) as compared to 2,500 to 5,000 rpm for typical petrol engines. Some types of diesel, however, have speeds up to 2,000 rpm. Because diesels use compression ratios of 14 or more, they are generally more heavily built than petrol engines, but this disadvantage is counterbalanced by their greater efficiency and the fact that they can be operated on less expensive fuel.

Two-Stroke Engines

By suitable design it is possible to operate a diesel as a two-stroke or two-cycle engine with a power stroke every other stroke of the piston instead of once every four strokes. The efficiency of such engines is less than that of four-stroke engines, and therefore the power of a two-stroke engine is always less then half that of a four-stroke engine of comparable size.

The general principle of the two-stroke engine is to shorten the periods in which fuel is introduced to the combustion chamber and in which the spent gases are exhausted to a small fraction of the duration of a stroke instead of allowing each of these operations to occupy a full stroke.

In the simplest type of two-stroke engine, the valves are the openings in the cylinder wall that are uncovered by the piston at the end of its outward travel. In the two-stroke cycle the fuel mixture or air is introduced through the intake port when the piston is fully withdrawn from the cylinder. The compression stroke follows and the charge is ignited when the piston reaches the end of this stroke. The piston then moves outward on the power stroke, uncovering the exhaust port and permitting the gases to escape from the combustion chamber.

11. DIRECT-CURRENT (DC) GENERATORS

If an armature revolves between two stationary field poles, the current in the armature moves in one direction during half of each revolution and in the other direction during the other half. To produce a steady flow of unidirectional, or direct, current from such a device, it is necessary to provide a means of reversing the current flow outside the generator once during each revolution. In older machines this reversal is accomplished by means of a commutator (коллектор) -- a split metal ring mounted on the shaft of the armature. The two halves of the ring are insulated from each other and serve as the terminals of the armature coil. Fixed brushes of metal or carbon are held against the commutator as it revolves, connecting the coil electrically to external wires. As the armature turns, each brush is in contact alternately with the halves of the commutator, changing position at the moment when the current in the armature coil reverses its direction. Thus there is a flow of unidirectional current in the outside circuit to which the generator is connected. DC generators are usually operated at fairly low voltages to avoid the sparking between brushes and commutator that occurs at high voltage. The highest potential commonly developed by such generators is 1500 V. In some newer machines this reversal is accomplished using power electronic devices, for example, diode rectifiers.

Modern DC generators use drum armatures that usually consist of a large number of windings set in longitudinal slits in the armature core and connected to appropriate segments of a multiple commutator. In an armature having only one loop of wire, the current produced will rise and fall depending on the part of the magnetic field through which the loop is moving. A commutator of many segments used with a drum armature always connects the external circuit to one loop of wire moving through the high-intensity area of the field, and as a result the current delivered by the armature windings is virtually constant. Fields of modern generators are usually equipped with four or more electromagnetic poles to increase the size and strength of the magnetic field. Sometimes smaller interpoles are added to compensate for distortions in the magnetic flux of the field caused by the magnetic effect of the armature.

DC generators are commonly classified according to the method used to provide field current for energizing the field magnets. A series-wound generator has its field in series with the armature, and a shunt-wound generator has the field connected in parallel with the armature. Compound-wound generators have part of their fields in series and part in parallel. Both shunt-wound and compound-wound generators have the advantage of delivering comparatively constant voltage under varying electrical loads. The series-wound generator is used principally to supply a constant current at variable voltage. A magneto is a small DC generator with a permanent-magnet field

12. AC MOTORS

Two basic types of motors are designed to operate on alternating current: synchronous motors and induction motors. The synchronous motor is essentially a three-phase alternator operated in reverse. The field magnets are mounted on the rotor and are excited by direct current, and the armature winding is divided into three parts and fed with three-phase alternating current. The variation of the three waves of current in the armature causes a varying magnetic reaction with the poles of the field magnets, and makes the field rotate at a constant speed that is determined by the frequency of the current in the AC power line.

The constant speed of a synchronous motor is advantageous in certain devices. However, in applications where the mechanical load on the motor becomes very great, synchronous motors cannot be used, because if the motor slows down under load it will «fall out of step» with the frequency of the current and come to a stop. Synchronous motors can be made to operate from a single-phase power source by the inclusion of suitable circuit elements that cause a rotating magnetic field.

The simplest of all electric motors is the squirrel-cage type of induction motor used with a three-phase supply. The armature of the squirrel-cage motor consists of three fixed coils similar to the armature of the synchronous motor. The rotating member consists of a core in which are imbedded a series of heavy conductors arranged in a circle around the shaft and parallel to it. With the core removed, the rotor conductors resemble in form the cylindrical cages once used to exercise pet squirrels. The three-phase current flowing in the stationary armature windings generates a rotating magnetic field, and this field induces a current in the conductors of the cage. The magnetic reaction between the rotating field and the current-carrying conductors of the rotor makes the rotor turn. If the rotor is revolving at exactly the same speed as the magnetic field no currents will be induced in it, and hence the rotor should not turn at a synchronous speed. In operation the speeds of rotation of the rotor and the field differ by about 2 to 5 per cent. This speed difference is known as slip.

Motors with squirrel-cage rotors can be used on single-phase alternating current by means of various arrangements of inductance and capacitance that alter the characteristics of the single-phase voltage and make it resemble a two-phase voltage. Such motors are called split-phase motors or condenser motors (or capacitor motors), depending on the arrangement used. Single-phase squirrel-cage motors do not have a large starting torque, and for applications where such torque is required, repulsion-induction motors are used. A repulsion-induction motor may be of the split-phase or condenser type, but has a manual or automatic switch that allows current to flow between brushes on the commutator when the motor is starting, and short-circuits all commutator segments after the motor reaches a critical speed. Repulsion-induction motors are so named because their starting torque depends on the repulsion between the rotor and the stator, and their torque while running depends on induction. Series-wound motors with commutators, which will operate on direct or alternating current, are called universal motors. They are usually made only in small sizes and are commonly used in household appliances.

13. ENGINEERING AS A PROFESSION

Electrical and Electronics Engineering

Electrical and electronics engineering is the largest and most diverse field of engineering. It is concerned with the development and design, application, and manufacture of systems and devices that use electric power and signals. Among the most important subjects in the field are electric power and machinery, electronic circuits, control systems, computer design, superconductors, solid-state electronics, medical imaging systems, robotics, lasers, radar, consumer electronics, and fibre optics.

Despite its diversity, electrical engineering can be divided into four main branches: electric power and machinery, electronics, communications and control, and computers.

Electric Power and Machinery

The field of electric power is concerned with the design and operation of systems for generating, transmitting, and distributing electric power Engineers in this field have brought about several important developments since the late 1970s. One of these is the ability to transmit power at extremely high voltages in both the direct current (DC) and alternating current (AC) modes, reducing power losses proportionately. Another is the real time control of power generation, transmission, and distribution, using computers to analyze the data fed back from the power system to a central station and thereby optimizing the efficiency of the system while it is in operation.

A significant advance in the engineering of electric machinery has been the introduction of electronic controls that enable AC motors to run at variable speeds by adjusting the frequency of the current fed into them. DC motors have also been made to run more efficiently this way.

Electronics

Electronic engineering deals with the research, design, integration, and application of circuits and devices used in the transmission and processing of information. Information is now generated, transmitted, received, and stored electronically on a scale unprecedented in history, and there is every indication that the explosive rate of growth in this field will continue unabated.

Electronic engineers design circuits to perform specific tasks, such as amplifying electronic signals, adding binary numbers, and demodulating radio signals to recover the information they carry. Circuits are also used to generate waveforms useful for synchronization and timing, as in television, and for correcting errors in digital information, as in telecommunications.

Prior to the 1960s, circuits consisted of separate electronic devices -- resistors, capacitors, inductors, and vacuum tubes -- assembled on a chassis and connected by wires to form a bulky package. The electronics revolution of the 1970s and 1980s set the trend towards integrating electronic devices on a single tiny chip of silicon or some other semiconductive material. The complex task of manufacturing these chips uses the most advanced technology, including computers, electron-beam lithography, micro-manipulators, ion-beam implantation, and ultraclean environments. Much of the research in electronics is directed towards creating even smaller chips, faster switching of components, and three-dimensional integrated circuits.

Communications and Control

Engineers work on control systems ranging from the everyday, passenger-actuated, such as those that run a lift, to the exotic, such as systems for keeping spacecraft on course. Control systems are used extensively in aircraft and ships, in military fire-control systems, in power transmission and distribution, in automated manufacturing, and in robotics.

Computers

Computer engineering is now the most rapidly growing field. The electronics of computers involve engineers in design and manufacture of memory systems, of central processing units, and of peripheral devices. The field of computer science is closely related to computer engineering; however, the task of making computers more «intelligent» (artificial intelligence), through creation of sophisticated programs or development of higher level machine languages or other means, is generally regarded as the aim of computer science.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.