рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыАнализ погрешностей спутниковой радионавигационной системы, работающей в дифференциальном режиме

Ошибки часов спутника и эфимеридная ошибка полностью компенсируются дифференциальным режимом, пока приемник пользователя и опорная станция используют данные одних и тех же спутников. Эфемеридные ошибки, если они достаточно велики (30 м и больше) точно так же компенсируются дифференциальным режимом. Для пользователей, находящихся вблизи опорной станции, пути соответствующих сигналов от спутников достаточно близки, так что компенсация является почти полной. Когда удаление пользователь - опорная станция возрастает и различные пути прохождения сигналов от спутников через ионосферу и тропосферу будут отличаться достаточно сильно, атмосферные неоднородности могут вызывать до некоторой степени различные задержки. Так как их протяженность различна, они вызывают ошибку в дифференциальных измерениях GPS, называемую пространственной декорреляцией. Эта ошибка становится больше при увеличении расстояния пользователь-станция, т.е. при нескольких сотнях километров.

Таким образом, в дифференциальном режиме остаются шумовые погрешности, погрешности из-за внешних источников шума, погрешности из-за переотражений, частично ионосферная ошибка и тропосферная ошибка. Эти погрешности, за исключением ионосферной составляющей, будут примерно равными как для P кода, так и для C/A кода.

4.3 Выводы

В автономном режиме с использованием C/A кода остаются ионосферные задержки, тропосферные задержки, эфимеридная ошибка, ошибки частотно-временной синхронизации, ошибки от внутренних и внешних шумов и ошибки из-за многолучевости.

При оценочных расчетах, ошибка в таком режиме составляет 70-100 метров. Метод временного усреднения позволяет исключить тропосферные ошибки что приводит к существенному улучшению точности до единиц метров.

В автономном режиме с использованием P кода устраняются ошибки: эфимеридная, частотно-временная и ионосферная. Таким образом, оценочная точность повышается до 20-30 сантиметров.

В дифференциальном режиме устраняются ионосферные задержки, ошибки часов спутника, эфимеридная ошибка. Таким образом, оценочная точность при использовании фазовой коррекции в этом методе становится равна 20-30 сантиметров. При этом, при использовании временного усреднения, можно исключить непостоянную составляющую ионосферной ошибки и тропосферную ошибку, что приводит к снижению уровня ошибки до 10-15 сантиметров.

5. Экспериментальная оценка точности координат GPS приемника

5.1 Подготовка экспериментов

Оценка точности производилась в три этапа.

Первый этап проводился с целью выяснения эффективности временного усреднения. Для этого использовался комплект аппаратуры Z12 (SCA-12) состоящий из одного приемника.

Второй этап проводился с целью выяснения использования дифференциального режима и дифференциального режима с фазовым уточнением. Для этого использовался комплект аппаратуры Z12 (sca-12) состоящий из двух приемников.

Третий этап проводился с целью выяснения влияния затенения и переотражения навигационных сигналов городской застройкой. Для этого использовался комплект аппаратуры Z12 (SCA-12) состоящий из двух приемников.

5.2 Аппаратура

Работа дифференциального режима АП оценивалась с помощью комплекта аппаратуры, состоящей из двух приемников сигналов СРНС «Навстар» Z12. Первый приемник выступал в роли базовой (корректирующей) станции, формирующей дифференциальные поправки. Вторым приемником производились измерения координат с учетом дифференциальных поправок, передаваемых по радиоканалу с базовой станции.

Приемник Z12 имел следующие технические характеристики.

1. Приемник Z12 фирмы Ashtech (сертифицирован и разрешен к применению в РФ) является 36 канальным Р-кодовым приемником (12 параллельных каналов по С/А-коду, частота L1; 12 параллельных каналов по Р-коду, частота L1; 12 параллельных каналов по Р-коду, частота L2) сигналов системы GPS "Навстар" с двухбитным аналого-цифровым преобразованием сигнала.

2. В приемнике используется специальная Z-технология для подавления зашумления Р-кода (Anti-Spoofing - A/S).

3. Точность измерения линий в режиме СТАТИКА, БЫСТРАЯ СТАТИКА, КИНЕМАТИКА, ПСЕВДОКИНЕМАТИКА составляет 5мм+1мм/км.

4. Определение координат выполняется в реальном времени, без последующей обработки, с точностью не хуже 3 cм.

5. Время измерений составляет 0,5 секунды на одно независимое измерение.

6. Дальность в дифференциальном режиме достигает значений 50 км в зависимости от используемого радиооборудования.

7. Время старта составляет не более 2 минут (от включения до начала съемки) и не более 30 секунд с текущими эфемеридами.

8. Сбор данных осуществляется во внутреннюю память приемника.

9. Программное обеспечение приемника обеспечивает сверхбыстрые определения координат.

Радиоканал для передачи дифференциальных поправок был организован на радиомодемах RF96 c мощностью излучения 20 Вт на частоте 412 МГц.

5.3 Измерения в автономном режиме

5.3.1 Общие сведения об эксперименте

Погрешности измерений подразделяют на грубые погрешности и промахи, систематические и случайные погрешности. Грубые погрешности и промахи появляются или в результате просчета наблюдателя при проведении опыта, или при проведении расчета, или в связи с резким изменением условий эксперимента и т. п. Исключение грубых погрешностей и промахов осуществляется путем повторения опыта и расчета. Поэтому можно полагать, что при многократных повторениях эксперимента эти погрешности исключаются.

Систематическими погрешностями называются погрешности, которые остаются неизменными или изменяющимися закономерным образом при повторении измерения значения величины.

Систематические погрешности чаще всего связаны с методикой измерений или обусловлены инструментальной погрешностью средств измерений. В первом случае обнаружить систематическую погрешность можно, применив различные методики измерений. Во втором - поставив ряд опытов в одной и той же точке с заранее известным эталоном. В результате измерений эталона можно найти поправку к показаниям прибора и устранить тем самым инструментальную погрешность. Таким образом все систематические погрешности вполне устранимы.

Случайными называются погрешности, изменяющиеся случайным образом при повторении эксперимента. Случайные погрешности, вообще говоря, неустранимы. Однако многократным повторением измерений значение измеряемой величины может быть получено сколь угодно близким к ее точному значению.

При постановке эксперимента необходимо принять во внимание случайный характер результатов измерения. В связи с этим возникает вопрос о числе измерений, достаточном для получения надежных данных о свойствах объекта. Если результатом должны быть числовые характеристики изучаемого объекта или процесса, то число измерений может быть достаточно малым, порядка нескольких десятков. Если результатом должны быть сведения о статистических свойствах объекта исследования, то число измерений имеет порядок величины или даже большее. Для того чтобы выявить статистические характеристики необходимо разбить весь диапазон изменения наблюдаемой величины х на интервалы , которые также называются разрядами. Оптимальное число разрядов к зависит от числа измерений n и ориентировочно его можно определить по формуле:

(3.1)

Положение разрядов выбирают так, чтобы среднее из наблюдаемых значений величины лежало близко к середине соответствующего разряда.

Очевидно, все измеренные значения можно распределить по разрядам. Каждый из разрядов будет характеризоваться значением , принятым для данного разряда. В результате можно построить таблицу распределения

В первом столбце таблицы записаны значения , принятые для данного разряда, а во втором - число измерений (частота попадания величины х в область j - разряда). Графически таблицу распределения можно представить в виде гистограммы.

5.3.2 Методика измерений

В течение длительного промежутка времени (недели) с помощью приемника Ashtech SCA - 12 проводились измерения координат антенны.

Принимаемый сигнал от спутников поступал от антенны на приемник где производилась его частичная обработка. Далее через драйвер последовательного порта RS-232 информация от приемника поступала на ЭВМ со скоростью одно сообщение в секунду, где с помощью программы Eval 32 проводилась автоматическая запись всей информации в текстовый файл, а так же обработка полученных данных. Поступающие данные содержали информацию:

О количестве «видимых» КА;

Номере каждого «видимого» КА;

Угол места и азимут КА относительно антенны;

Отношение сигнал - шум;

А так же используется ли КА в измерении координат;

Координаты антенны приемника.

Так же если ввести координаты антенны в программу, то можно наглядно увидеть отклонение определения координат от заданных и не только посмотреть, но и оценить их количественно.

При дальнейшей обработке записанных данных из текстового файла данные заносились MS Excel где и производилась их окончательная обработка.

Так как информация от приемника к ЭВм поступает со скоростью одно сообщение в секунду, то было принято решение делать три вида выборки отсчетов из всей совокупности, то есть отсчеты с секундной выборкой, 5-ти минутной и часовой.

5.3.3 Результаты измерений

В результате обработки были найдены средние значения широты, долготы и высоты, оценены средние квадратичные отклонения (СКО), которые приведены в таблице 3.1. Так же построены гистограммы измеренных значений для двух случаев, приведенные на рисунке 3.1 - 3.2

Таблица 3.1 - Результаты эксперимента.

1 сек

1 час

Среднее значение широты

56?27'6.50''

56?27'6.52''

Среднее значение долготы

8457'43.18''

8457'43.19''

Среднее значение высоты (м)

131,83

131,85

СКО широты (м)

2.31

1.46

СКО долготы (м)

1.75

1.61

СКО высоты (м)

2.15

2.17

Рисунок 3.1 - Гистограммы посекундной выборки.

Рисунок 3.2 - Гистограммы часовой выборки.

Огибающие гистограмм на рисунке 3.1, 3.2 отличаются от нормального закона. Возможно, это связано с тем, что на данном интервале времени измеренные значения носят не случайный характер, а состоят из случайной и систематической составляющей. Если взять измерения на более большом интервале времени (например, месяц), то систематическая составляющая тоже будет носить случайный характер, и форма кривой будет в большей степени соответствовать нормальному закону распределения.

5.4 Измерения в дифференциальном режиме

5.4.1 Методика измерений

В течение фиксированых отрезков времени с помощью двух приемников Ashtech SCA - 12 проводились измерения координат АП.

Принимаемый сигнал от спутников поступал от антенн на приемники где производилась его частичная обработка.

Далее через последовательные порты и драйверы RS-232 информация от приемника поступала на ЭВМ сразличной скоростью сообщений в секунду, где с помощью программы PRISM проводилась автоматическая запись всей информации, а так же обработка полученных данных.

5.4.2 Первый эксперимент

Эксперимент проводился 03.12.2007 (09:09:25.00 .. 11:08:35.00) с использованием двух приемников Ashtech SCA-12S через каждые 5 секунд (всего за эксперимент было произведено 1430 измерительных эпох. Антенна АП была выставлена в юго-восточное окно лаборатории.

СКО в автономном режиме

Широта (м): 3.941485

Долгота (м): 3.170840

Высота (м): 3.146738

СКО в дифференциальном режиме

Широта (м): 0.257843

Долгота (м): 0.727183

Высота (м): 0.203372

СКО в дифференцильном режиме с использованием фазового уточнения Широта (м): 0.159712

Долгота (м): 0.524596

Высота (м): 0.171184

5.4.3 Второй эксперимент

Эксперимент проводился 03.12.2007 (06:26:20.00 .. 08:25:20.00) с испльзованием двух приемников Ashtech SCA-12S через каждые 20 секунд (всего за эксперимент было произведено 357 измерительных эпох. Антенна АП была выставлена в юго-восточное окно лаборатории.

СКО в автономном режиме

Широта (м): 1.101042

Долгота (м): 1.256856

Высота (м): 1.383968

СКО в дифференциальном режиме

Широта (м): 0.198202

Долгота (м): 0.371975

Высота (м): 0.084000

Ско в дифференцильном режиме с использованием фазового уточнения

Широта (м): 0.128189

Долгота (м): 0.315991

Высота (м): 0.103652

5.4.4 Третий эксперимент

Эксперимент проводился 04.12.2007 (08:29:44.00..10:29:42.00)

измерения производились с испльзованием двух приемников Ashtech SCA-12S через каждую 1 секунду (всего за эксперимент было произведено 7198 измерительных эпох. Антенна АП была выставлена в северное окно лаборатории.

СКО в автономном режиме

Широта (м): 3.305110

Долгота (м): 3.144579

Высота (м): 2.473976

СКО в дифференциальном режиме

Широта (м): 0.278446

Долгота (м): 0.706456

Высота (м): 0.242687

Ско в дифференцильном режиме с использованием фазового уточнения

Широта (м): 0.138257

Долгота (м): 0.403907

Высота (м): 0.165313

5.4.5 Четвертый эксперимент

Эксперимент проводился 04.12.2007 (06:02:35.00..08:02:30.00) измерения производились с использованием двух приемников Ashtech SCA-12S через каждые 5 секунд (всего за эксперимент было произведено 1439 измерительных эпох. Антенна АП была выставлена в северное окно лаборатории.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.