рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефератыПроект реконструкции АТС-62/69 г. Алматы с заменой АТСДШ на цифровую АТС

(4.25)

Тогда, То =13 300 ч

Аналогично могут быть определены показатели надежности направления связи и другие.

Современные системы связи, обладающие сложной сетевой структурой, являются разновидностью “ больших систем”, при оценке надежности функционирования которых исследуются отдельные элементы и параметры системы с точки зрения их влияния на величину суммарных средних потерь сообщений.

Системы распределения информации представляют собой весьма сложный комплекс программно- аппаратных средств, и в связи с этим надежность всей системы зависит от надежности, как программного обеспечения, так и аппаратных средств.

Элементы системы обладают конечной надежностью. Последнее означает, что на элементы системы воздействует поток неисправностей, который может быть примитивным или простейшим с интенсивностями нагрузки А для абонентских комплектов, Ак.э. для коммутационных элементов коммутационного поля, Ам.с. для монтажных соединений, Ал. Для линейных(исходящих и входящих) комплектов, Аш. Шнуровых комплектов. Поток неисправностей всегда примитивный, в тех случаях, когда параметр потока неисправностей одного элемента весьма мал, а число элементов велико, характер потока близок к простейшему.

За основу расчета примем тот факт, что реальная пропускная способность системы определяется числом только исправных элементов, образующих фактическую структуру системы. Определение пропускной способности системы с ненадежными элементами сводится к нахождению фактической структуры( или нагрузки) и расчету пропускной способности уже известными методами для систем с абсолютно надежными элементами.

Надежность коммутационных элементов и монтажных соединений внутри коммутатора намного выше надежности выходов из коммутатора, то есть Ак.э = Ам.с =0, Ал больше нуля. Предположим, что линии (выхода из коммутатора) выходят из строя на много реже, чем поступают вызовы. Тогда имеем два независимых процесса: обслуживание вызовов с переменным числом dл обслуживающих (исправных) линий, а также выхода и восстановления линий. Следовательно, вероятность потерь по времени равна:

(4.26)

Расчет надежности временного коммутатора с ненадежными линиями представлен программой вычисления потерь на персональном компьютере с использованием языка программирования Бейсик.

Программа расчета потерь в полнодоступном пучке с ненадежными линиями и примитивным потоком неисправностей приведена в приложении Г. Пусть N =17000, j =h =1, Vj =2 , S =3, где n- число входов в коммутатор; S- число звеньев коммутации.; V емкости пучка.

Вывод: таким образом при вычислении получилось, вероятность потерь P=0.796 следовательно, выхода коммутатора выходят из строя реже, чем поступают вызовы.

4.3 Определение пропускной способности коммутационной системы S-12

Определение пропускной способности коммутационной системы S-12. несколько усложняется за счёт объёмов КС что является препятствием к разработке точных методов расчета, и единственный выход - использовать методы высокой точности, поскольку только они позволяют оптимально проектировать системы коммутации, т. е. определять минимальный объем коммутационного оборудования (коммутационного поля), при котором требования к вероятностным характеристикам системы коммутации гаран-тированно выполняются.

Аппроксимация системы коммутации каналов полнодоступным пучком для исследования пропускной способности впервые была предложена А. К. Эрлангом. Им же получены первые основополагающие результаты для полнодоступного пучка с потерями в режиме стационарного равновесия.

Переходные вероятности в пучке произвольной емкости могут быть представлены в виде ряда Тейлора, элементы которого получены с помощью преобразования исходной матрицы интенсивностей переходов.

Раздельно процессы рождения и гибели частично описаны в, где приведены только начальные переходные вероятности процессов и отсутствует общая методика их нахождения. Переходный процесс рождения и гибели возникает при первоначальном запуске системы, изменении интенсивности входящего потока вызовов, перегрузках.

Рассмотрим основные расчетные соотношения, которые широко исполь-зуются в инженерных расчетах пропускной способности электронных систем коммутации, включая S-12. Определим общую модель системы массового обслуживания (СМО) и введем некоторые обозначения. Коммутационное поле (КП), рисунок 4.1 имеет N входов, выходы КП разбиты на h направлений, пучок линий в j-м направлении содержит линий, так что общее число выходов из КП . Для вызова, поступившего на вход системы, может потребоваться соединение только с одним выходом требуемого направления. При этом безразлично, с какой именно линией требуемого направления произойдет соединение и по какому конкретно пути оно будет установлено.

Поток вызовов, поступающий на вход СМО, будем считать примитивным (пуассоновская нагрузка второго рода), если число источников нагрузки ( -- параметр свободного источника вызовов, -- интенсивность обслуживания), или простейшим (пуассоновская нагрузка первого рода) в противном случае. В первом случае параметр свободного источника вызовов , интенсивность обслуживания , интенсивность поступающей нагрузки .

Рисунок 4.1 - Модель коммутационной системы

Во втором случае параметр потока вызовов , интенсивность обслуживания , интенсивность нагрузки . Вероятность того, что поступившему вызову i-го входа потребуется соединение с j-м направлением, может зависеть только от номера входа i и номера направления j и равна kij. При этих условиях характер потока вызовов в направлении сохранится, его интенсивность нагрузки .

Длительности занятия для всех вызовов, принятых к обслуживанию, предполагаются независимыми как друг от друга в совокупности, так и от потоков и распределены по одинаковому для всех вызовов экспоненциальному закону. Длительность занятия вызовом КП не зависит ни от каких сведений о прошлом процесса. Структурные параметры КП предполагаются известными, при этом также предполагается, что все пути соединения электрически разделены в пространстве, т. е. соединения проходят по различным путям.

Для полного определения работы рассматриваемой СМО осталось задать дисциплину обслуживания, т. е. указать правило, согласно которому принима-ется решение о порядке обслуживания вызова.

Любой вызов обслуживается по командам управляющего устройства, которое получает информацию о поступлении вызова, его требованиях (номере входа, по которому поступил вызов, и номере направления, с которым необходимо установить соединение), состоянии КП (т. е. по каким именно путям проходят уже установленные соединения) и так далее. На основании этой информации управляющее устройство (УУ) принимает и осуществляет решение об обслуживании данного вызова или отказе. Различают две стратегии УУ в обслуживании вызовов. В первом случае при невозможности немедленного установления соединения УУ принимает решение об отказе в обслуживании. Во втором случае в аналогичной ситуации УУ ставит поступивший вызов на ожидание. В соответствии с этим различают два вида потерь: явные и условные. В дальнейшем при расчете пропускной способности систем коммутации каналов используется первая стратегия, противный случай оговаривается особо. Поэтому предполагаем, что дисциплина обслуживания зависит только от трех факторов: номера входа, по которому поступил вызов, состояния КП в момент поступления вызова, т. е. того, какие промежуточные линии (ПЛ) внутри КП являются свободными или занятыми, и номера направления, с которым требуется установить соединение. Еще одно предположение будет состоять в том, что ПЛ к моменту поступления вызова заняты случайно. Наконец, предположим, что решение об обслуживании, установлении соедине-ния и отказе в обслуживании принимается мгновенно. Таким образом, процесс обслуживания однозначно определен.

Вероятность потерь можно условно разбить на две составляющие: вероятность внутренней блокировки и вероятность потерь в пучке из Vj линий:

(4.27)

Введем некоторые обозначения:

N -- число входов в КП; М - число выходов из КП;

h -- число направлений в КП; Vj - число выходов в j-м направлении ;

j -- параметр свободного источника вызовов в направ-лении j;

-1 -- средняя длительность занятия;

-- параметр потока вызовов в j-м направлении;

А0 -- интенсивность общей поступающей нагрузки;

kij -- коэффициент тяготения нагрузки в j-м направлении;

-- интен-сивность нагрузки, поступающей в j-е направление;

-- удельная нагрузка, поступающая в j-е направление;

Аg -- общая обслуженная нагрузка на выходе g-го звена ;

Agj -- обслуженная нагрузка j-го направления на выходе g-го звена;

dj -- доступность в j-м направлении;

{х} -- состояние, т.е. наличие в КП х установленных соединений в j-м направлении ;

Рб -- вероятность внутренней блокировки;

-- вероятность потерь в пучке из Vj линий;

-- условная вероятность состояния , при котором любой приходящий вызов j-го направления может быть обслужен;

-- условная вероятность потери вызова j-го направления в состоянии ;

s -- число звеньев коммутации;

-- число входов в коммутатор g-го звена;

-- то же, но выходов;

-- число коммутаторов в g-м звене;

-- число выходов j-го направления из одного коммутатора s-го звена;

-- удельная обслуженная нагрузка одним выходом коммутатора g-го звена;

-- то же, но для j-го направления;

-- нагрузка, обслуженная одним коммутатором g-го звена;

-- число коммутаторов g-го звена, доступных входящему выходу;

-- число коммутаторов (g+1)-го звена, доступных через свободные ПЛ одному из коммутаторов g-го звена.

В основном для расчета вероятности потерь в электронной АТС (системе коммутации массового обслуживания) применяется первая модель Эрланга. Рассмотрим её для следующих предположений:

число направлений в КП произвольно;

вызовы, поступающие на любое направление, образуют пуассоновский поток постоянной интенсивности с параметрами ;

длительность занятия подчиняется экспоненциальному распределению с параметром ;

вызов, не принятый к обслуживанию в момент поступления, теряется, не влияя на моменты поступления последующих вызовов;

любой из Vj выходов направления доступен, когда он свободен для любого поступающего вызова;

исходной для расчета является поступающая нагрузка;

система коммутации находится в стационарном режиме.

При этих предположениях определяется стационарная вероятность того, что х линий направления заняты (х -- положительное, целое):

(4.28)

где .

Для действительных положительных значений х = Vj известно интегральное представление:

(4.29)

С учетом пятого исходного предположения 4.27 переписываем в виде

(4.30)

Отметим, что пятое исходное предположение допускает применение модели к не блокирующим КП, в том числе многозвенным, для которых Рб = 0. Чаще всего для определения вероятности потерь в цифровой системе коммутации используют не первую модель Эрланга, а модуль Энгсета, поэтому рассмотрим для вычисления вероятности потерь в цифровой коммутационной системе модель Энгсета.

Для этого необходимо в вести исходные данные исходя из рисунка 4.1:

число направлений в КП произвольно;

параметр потока вызовов в направлении в момент занятости х входов пропорционален числу свободных источников, т.е.

где N -- число источников вызовов (число входов в КП);

-- интенсивность поступления вызова от свободного источника в j-м направлении;

длительность занятия подчиняется экспоненциальному распределению с параметром ;

вызов, не принятый к обслуживанию в момент поступления, теряется, не влияя на моменты поступления последующих вызовов;

любой из Vj выходов направления доступен, когда он свободен для любого поступающего вызова;

исходной для расчета является поступающая нагрузка;

система коммутации находится в стационарном режиме.

Стационарная вероятность того, что х выходов направления окажутся занятыми:

(4.31)

где -- биномиальный коэффициент.

Пусть -- нагрузка, поступающая от одного источника в системе без потерь. С учетом пятого исходного предположения, что возможно применение модели к не блокирующим КП, в том числе многозвенным, для которых Рб=0, поэтому 4.2:

(4.32)

Для инженерных расчетов предполагается пользоваться первой формулой Эрланга при , в противном случае используют формулу Энгсета.

Для цифровой системы коммутации S-12 число входов в КП равно N = 17000, а Vj -- число линий в одном направлении, тогда максимально в одном направлении на S-12 две линии ИКМ по 30 каналов в каждой, поэтому Vj = 60 линий. Подставив данные в условие получим: , т.е. условие не выполняется, т.к. число входов в КП больше числа линий в одном направлении, поэтому для определения вероятности потерь в цифровой коммутационной системе S-12 воспользуемся формулой Энгсета .

Для более точного вычисления вероятности потерь составим программу по формуле Энгсета и получим необходимые значения.

Программа вычисления вероятности потерь по формуле Энгсета в полнодоступном пучке линий при известной пуассоновской нагрузке второго рода А, емкости пучка V и числе источников нагрузки N, приведена ниже на языке Паскаль, затем даны результаты вычислений. Алгоритм программы и листинг программы приведены в приложении Д

Вывод: Таким образом при вычислении получилось, что вероятность потерь на АТС-72/79 S-12 составила E = 0, 99602 при заданных значениях

АвознАТС72/79 =624,99 Эрл

V =3200 каналов

N=17000

Это говорит о том, что вероятность потерять вызов в цифровой коммутационной системе S-12 очень мала, что означает пропускная способность системы очень велика и она является практически не блокируемой системой.

4.4 Система ОКС-7

Основными преимуществами общеканальной системы сигнализации 7 являются:

скорость - время установления соединения не превышает одной секунды;

высокая производительность - один канал сигнализации способен одновременно обслуживать до тысячи разговорных каналов;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.