рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Понятие о физической величине. Международная система единиц физических величин СИ

,                                              (7.1)

где B0, B1, … Bn – определяемые коэффициенты. Так как данный многочлен (7.1) изображается кривой параболического типа, то такая интерполяция называется параболической.

Коэффициенты интерполирующего многочлена находят, решая систему из (l + 1) линейных уравнений, получающихся при подстановке в уравнение (7.1) известных значений уi и хi.

Наиболее просто производится интерполирование, когда интервалы между значениями аргумента постоянны, т. е.

,                               (7.2)

где h – постоянная величина, называемая шагом. В общем случае

.                                                   (7.3)

При использовании интерполяционных формул приходится иметь дело с разностями значений у и разностями этих разностей, т. е. разностями функции у(х) различных порядков. Разности любого порядка вычисляются по формуле

.                                               (7.4)

Например, и . При вычислении разностей их удобно располагать в виде таблицы (см. Табл. 4), в каждом столбце которой разности записывают между соответствующими значениями уменьшаемого и вычитаемого, т. е. составляется таблица диагонального типа. Обычно разности записывают в единицах последнего знака.


Таблица 4

Разности функции у(х)

x

y

y

2y

3y

4y

x0

у0

у0

у1

у2

у3

2у0

2у1

2у2



x1

у1

3у0

3у1


x2

у2

4у0

x3

у3


х4

у4




Так как функция у(х) выражается многочленом (7.1) n-ой степени относительно х, то разности также являются многочленами, степени которых понижаются на единицу при переходе к последующей разности. N-я разность многочлена n-ой степени является постоянным числом, т. е. содержит х в нулевой степени. Все разности более высокого порядка равны нулю. Это определяет степень интерполирующего многочлена.

Преобразовав функцию (7.1), можно получить первую интерполяционную формулу Ньютона:

.                   (7.5)

Она используется для нахождения значений у при любых х в пределах измерений. Представим эту формулу (7.5) в несколько ином виде:

.            (7.6)

Последние две формулы иногда называют интерполяционными формулами Ньютона для интерполирования вперед. В эти формулы входят разности, идущие по диагонали вниз, и их удобно использовать в начале таблицы экспериментальных данных, где разностей достаточно.

Вторая интерполяционная формула Ньютона, выведенная из того же уравнения (7.1), выглядит следующим образом:

.                 (7.7)

Данную формулу (7.7) принято называть интерполяционной формулой Ньютона для интерполирования назад. Она используется для определения значений у в конце таблицы.

Теперь рассмотрим интерполяцию при неравноотстоящих значениях аргумента.

Пусть по-прежнему функция у(х) задается рядом значений хi и уi, но интервалы между последовательными значениями хi неодинаковы. Использовать вышеприведенные формулы Ньютона нельзя, так как они содержат постоянный шаг h. В задачах такого рода необходимо вычислить приведенные разности:

;                    и т. д.

;     и т. д.                          (7.8)

Разности более высоких порядков вычисляются аналогично. Как и для случая равноотстоящих значений аргумента, если f(х) – многочлен n-ой степени, то разности n-го порядка постоянны, а разности более высокого порядка равны нулю. В простых случаях таблицы приведенных разностей имеют вид, аналогичный таблицам разностей при равноотстоящих значениях аргумента.

Помимо рассмотренных интерполяционных формул Ньютона часто применяют интерполяционную формулу Лагранжа:

.               (7.9)

В этой формуле каждое из слагаемых представляет собой многочлен n-ой степени и все они равноправны. Поэтому до окончания вычислений нельзя пренебрегать какими-либо из них.

Обратное интерполирование. На практике иногда бывает необходимо найти значение аргумента, которому соответствует определенное значение функции. В этом случае интерполируют обратную функцию и следует иметь в виду, что разности функции не постоянны и интерполирование нужно проводить для неравноотстоящих значений аргумента, т. е. использовать формулу (7.8) или (7.9).

Экстраполирование. Экстраполированием называют вычисление значений функции у за пределами интервала значений аргумента х, в котором были проведены измерения. При неизвестном аналитическом выражении искомой функции экстраполирование нужно проводить весьма осторожно, так как не известно поведение функции у(х) за пределами интервала измерений. Экстраполяция допускается, если ход кривой плавный и нет причин ждать резких изменений в исследуемом процессе. Тем не менее экстраполирование должно проводиться в узких пределах, например в пределах шага h. В более далеких точках можно получить неверные значения у. Для экстраполирования применяются те же формулы, что и для интерполирования. Так, первая формула Ньютона используется при экстраполировании назад, а вторая формула Ньютона – при экстраполировании вперед. Формула Лагранжа применяется в обоих случаях. Надо также иметь в виду, что экстраполирование приводит к большим погрешностям, чем интерполирование.

Численное интегрирование.

Формула трапеций. Формулу трапеций обычно применяют в том случае, если значения функции измерены для равноотстоящих значений аргумента, т. е. с постоянным шагом. По правилу трапеций в качестве приближенного значения интеграла

                                                   (7.10)

принимают величину

,                                    (7.11)

т. е. полагают . Геометрическая интерпретация формулы трапеций (см. рис. 7.1) следующая: площадь криволинейной трапеции заменяется суммой площадей прямолинейных трапеций.

Полная ошибка вычисления интеграла по формуле трапеций оценивается как сумма двух ошибок: ошибки усечения, вызванной заменой криволинейной трапеции прямолинейными, и ошибки округления, вызванной ошибками измерения значений функции.

Ошибка усечения для формулы трапеций составляет

, где    .                        (7.12)

Формулы прямоугольников. Формулы прямоугольников, как и формулу трапеций применяют также в случае равноотстоящих значений аргумента. Приближенная интегральная сумма определяется по одной из формул

,                                        (7.13)

.                                          (7.14)

Геометрическая интерпретация формул прямоугольников дана на рис. 7.1. Погрешность формул (7.13) и (7.14) оценивается неравенством

,  где    .                         (7.15)

Формула Симпсона. Приближенно интеграл определяется по формуле

,                (7.16)

где n – четное число. Ошибка формулы Симпсона оценивается неравенством

,        где    .                       (7.17)

Формула Симпсона приводит к точным результатам для случая, когда подынтегральная функция является многочленом второй или третьей степени.

Численное интегрирование дифференциальных уравнений. Рассмотрим обыкновенное дифференциальное уравнение первого порядка у' = f(х, у) с начальным условием у = у0 при х = х0. Требуется найти приближенно его решение у = у(х) на отрезке [х0, хk].

Для этого данный отрезок делится на n равных частей длиной (хkх0)/n. Поиск приближенных значений у1, у2, … , уn функции у(х) в точках деления х1, х2, … , хn = хk осуществляется различными методами.

Метод ломаных Эйлера. При заданном значении у0 = у(х0) остальные значения уi  у(хi) последовательно вычисляются по формуле

,  (7.18)

где i = 0, 1, …, n – 1.

Графически метод Эйлера представлен на рис. 7.1, где график решения уравнения у = у(х) приближенно представляется ломаной (откуда и происходит название метода).

Метод Рунге-Кутта.  Обеспечивает более высокую точность по сравнению с методом Эйлера. Искомые значения уi последовательно вычисляются по формуле

,    (7.19)

где, , , .


ОБЗОР НАУЧНОЙ ЛИТЕРАТУРЫ


Обзор литературы – обязательная часть всякого отчета об исследовании. Обзор должен полно и систематизированно излагать состояние вопроса, позволять объективно оценивать научно-технический уровень работы, правильно выбирать пути и средства достижения поставленной цели и оценивать как эффективность этих средств, так и работы в целом. Предметом анализа в обзоре должны быть новые идеи и проблемы, возможные подходы к решению этих проблем, результаты предыдущих исследований, данные экономического характера, возможные пути решения задач. Противоречивые сведения, содержащиеся в различных литературных источниках, должны быть проанализированы и оценены с особой тщательностью.

Из анализа литературы должно быть видно, что в этом узком вопросе известно вполне достоверно, что сомнительно, спорно; какие задачи в поставленной технической проблеме первоочередные, ключевые; где и как стоит искать их решения.

Затраты времени на обзор складываются примерно так:

выписки из справочников, чтение и конспектирование основных монографий

3 ­– 5 %

составление рабочего плана обзора

1 – 2 %

поиск периодики (и составление картотеки или списка литературы)

5 – 8 %

чтение и конспектирование периодики

30 – 40 %

отбор материала из конспектов, его сопоставление и анализ

20 – 30 %

написание обзора

10 – 20 %

правка текста

10 – 15 %

переписка и изготовление рисунков

5 – 6 %

Исследование всегда имеет узкую конкретную цель. В заключении обзора обоснованы выбор цели и метода. Обзор должен подготовить это решение. Отсюда следует его план и отбор материала. В обзоре рассматривают только такие узкие вопросы, которые могут прямо повлиять на решение задачи, но настолько полно, чтобы охватить практически всю современную литературу по этому вопросу.


ОРГАНИЗАЦИЯ СПРАВОЧНО–ИНФОРМАЦИОННОЙ ДЕЯТЕЛЬНОСТИ


В нашей стране в основу информационной деятельности положен принцип централизованной обработки научных документов, позволяющий с наименьшими затратами достичь полного охвата источников информации, наиболее квалифицированно их обобщить и систематизировать. В результате такой обработки подготавливаются различные формы информационных изданий. К ним относятся:

1) реферативные журналы (РЖ) – основное информационное издание, содержащее преимущественно рефераты (иногда аннотации и библиографические описания) источников, представляющих наибольший интерес для науки и практики. Реферативные журналы, оповещающие о появившейся научно-технической литературе, позволяют осуществлять ретроспективный поиск, преодолевать языковые барьеры, дают возможность следить за достижениями в смежных областях науки и техники;

2) бюллетени сигнальной информации (СИ), включающие в себя библиографические описания литературы, выходящей по определенной отрасли знаний и являющиеся по существу библиографическими указателями. Их основной задачей является оперативное информирование о всех новинках научной и технической литературы, так как появляется эта информация значительно раньше, чем в реферативных журналах;

3) экспресс-информация – информационные издания, содержащие расширенные рефераты статей, описание изобретений и других публикаций и позволяющие не обращаться к первоисточнику. Задача экспресс-информации – быстрое и достаточно полное ознакомление специалистов с новейшими достижениями науки и техники;

4) аналитические обзоры – информационные издания, дающие представление о состоянии и тенденциях развития определенной области (раздела, проблемы) науки и техники;

5) реферативные обзоры – преследующие ту же цель, что и аналитические обзоры, и в то же время носящие более описательный характер. Авторы реферативных обзоров не дают собственной оценки содержащихся в них сведений;

6) печатные библиографические карточки, т. е. полное библиографическое описание источника информации. Относятся к числу сигнальных изданий и выполняют функции оповещения о новых публикациях и возможностях создания каталогов и картотек, необходимых каждому специалисту, научному работнику;

7) аннотированные печатные библиографические карточки;

8) библиографические указатели.

Большая часть этих изданий распространяется и по индивидуальной подписке. Подробные сведения о них можно найти в издаваемых ежегодно "Каталогах изданий органов научно-технической информации".


Страницы: 1, 2, 3, 4, 5, 6




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.