рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Построение экономической модели с использованием симплекс-метода

Свойство однозначности экстремальных точек позволяет опре-
делить их алгебраическим методом. Будем считать
, что линейная
модель стандартной формы содержит т уравнений и п
( т <= п ) не-
известных (
правые части ограничений — неотрицательные ) . Тогда
все допустимые экстремальные точки определяются как все одно-
значные неотрицательные решения системы
m уравнений , в ко-
торых п
m  переменных равны нулю.

Однозначные решения такой системы уравнений, получаемые
путем приравнивания к нулю (
п — т ) переменных , называются
базисными решениями
. Если базисное решение удовлетворяет
требованию неотрицательности правых частей
, оно называется
допустимым базисным решением. Переменные
, имеющие нулевое
значение
, называются небазисными переменными , остальные —
базисными переменными.

Из вышеизложенного следует , что при реализации симплекс-
метода алгебраическое определение базисных решений соответст-
вует идентификации экстремальных точек
, осуществляемой при
геометрическом представлении пространства решений
. Таким об-
разом
, максимальное число итераций при использовании симплекс-
метода равно максимальному числу базисных решений задачи ЛП
,
представленной в стандартной форме . Это означает , что количество
итерационных процедур симплекс-метода не превышает

Cпт= n! / [ ( n - m )!m! ]      

Вторая из ранее отмеченных закономерностей оказывается
весьма полезной для построения вычислительных процедур симп-
лекс-метода
, при реализации которого осуществляется последова-
тельный переход от одной экстремальной точки к другой, смежной
с ней . Так как смежные экстремальные точки отличаются только
одной переменной, можно определить каждую последующую ( смеж-
ную) экстремальную точку путем замены одной из текущих не-
базисных ( нулевых ) переменных текущей базисной переменной.
В нашем случае получено решение
, соответствующее точке А , откуда следует осуществить переход в точку В . Для этого нужно увеличивать небазисную переменную X2 от исходного нулевого значения до значе-
ния
, соответствующего точке В ( см. рис. 1 ). В точке B переменная
S1 ( которая в точке А была базисной ) автоматически обращается в
нуль и , следовательно , становится небазисной переменной
. Таким
образом , между множеством небазисных и множеством базисных
переменных происходит взаимообмен переменными
X2 и S1 . Этот
процесс можно наглядно представить в виде следующей таблицы.

 

Экстремальная точка

Нулевые переменные

Ненулевые переменные

А

S2 , X2

S1 , X1

В

S1 , X2

S2 , X1

 

Применяя аналогичную процедуру ко всем экстремальным точкам
рис. 1 , можно убедиться в том
, что любую последующую экстре-
мальную точку всегда можно определить путем взаимной замены
по одной переменной в составе базисных и небазисных переменных
( предыдущей смежной точки ) . Этот фактор существенно упрощает
реализацию вычислительных процедур симплекс-метода.

Рассмотренный процесс взаимной замены переменных приводит
к необходимости введения двух новых терминов
. Включаемой пе-
ременной называется небазисная в данный момент переменная ,
которая будет включена в множество базисных переменных на сле-
дующей итерации ( при переходе к смежной экстремальной точке ) .
Исключаемая переменная — это та базисная переменная , которая
на следующей итерации подлежит исключению из множества ба-
зисных переменных .

 

Вычислительные процедуры симплекс-метода .

 

 симплекс-алгоритм состоит из следующих шагов.

Шаг 0. Используя линейную модель стандартной формы , опреде-
ляют начальное допустимое базисное решение путем приравнива-
ния к нулю п — т ( небазисных ) переменных.

Шаг 1. Из числа текущих небазисных ( равных нулю ) перемен-
ных выбирается включаемая в новый базис переменная , увеличение
которой обеспечивает улучшение значения целевой функции. Если
такой переменной нет , вычисления прекращаются , так как текущее
базисное решение оптимально . В противном случае осуществляется
переход к шагу 2.

Шаг 2. Из числа переменных текущего базиса выбирается исклю-
чаемая переменная , которая должна принять нулевое значение ( стать
небазисной ) при введении в состав базисных новой переменной .

Шаг 3. Находится новое базисное решение , соответствующее
новым составам небазисных и базисных переменных . Осуществляется переход к шагу 1.

Поясним процедуры симплекс-метода на примере решения нашей зада-
чи
. Сначала необходимо представить целевую функцию и ограничения модели в стандартной форме:

                        Z -    X1    -    25X2 +0S1 -0S2 =   0 ( Целевая функция )

          5X1  +  100X2 +  S1           = 1000 ( Ограничение )

           -X1    +     2X2          + S2 = 0 ( Ограничение )   

Как отмечалось ранее , в качестве начального пробного решения
используется решение системы уравнений , в которой две переменные принимаются равными нулю . Это обеспечивает единст-
венность
и допустимость получаемого решения . В рассматриваемом
случае очевидно, что подстановка
X1 = X2 = 0 сразу же приводит к следующему результату: S1 = 1000 , S2 = 0 ( т. е. решению , соответствующему точке А на рис. 1 ) . Поэтому точку А можно использовать как начальное допустимое решение . Величина Z в этой точке равна нулю , так как и X1 и X2  имеют нулевое значение . Поэтому , преобразовав уравнение целевой функции так , чтобы его правая часть стала равной нулю , можно убедиться в том , что правые части уравнений целевой функции и ограничений полностью характеризуют начальное решение . Это имеет место во всех случаях , когда начальный базис состоит из остаточных переменных.            

Полученные результаты удобно представить в виде таблицы :

 

Базисные переменные

Z

X1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.