рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Синергетика: различные взгляды

Исследование вопроса о взаимосвязи системы и внешней среды на методологическом системном уровне выявляет частное противоречие, существующее на предметном уровне описания. Известно, что пространственно упорядоченные стационарные структуры возникают не только в неравновесных, но и в равновесных физико-химических системах (образование кристаллов, явление сверхпроводимости и т.п.). Механизмом возникновения неравновесных и равновесных пространственных структур являются соответственно неравновесные и равновесные фазовые переходы. Эти переходы на макро уровне (см. ниже) с формальной математической точки зрения описываются единым образом с помощью обобщенного уравнения Гинзбурга---Ландау [37]. С точки зрения взаимосвязи системы и внешней среды природа неравновесных и равновесных структур, однако, совершенно различна. Неравновесные стационарные структуры, как уже обсуждалось, являются следствием сбалансированности потоков обмена со средой и процессов внутри системы, наличие потоков обмена --- необходимое условие их существования. Равновесные же структуры образуются в замкнутых (квазизамкнутых) системах, взаимодействием которых со средой (вообще говоря, неравновесной) можно пренебречь. В равновесной системе каждый прямой процесс сбалансирован, скомпенсирован обратным ему процессом, следствием чего и является стационарность равновесных структур. Явления возникновения и превращения различных по природе структур, вообще говоря, также должны иметь различную природу. Возникает вопрос: следствием чего является идентичность описания этих явлений в рамках обобщенного уравнения Гинзбурга---Ландау? Здесь мы можем вспомнить суть математического структурного подхода, сформулированного Н.Бурбаки: "Структуры являются орудиями математика: каждый раз, когда он замечает, что между элементами, изучаемыми им, имеют место отношения, удовлетворяющие аксиомам структуры определенного типа, он сразу может воспользоваться всем арсеналом общих теорем, относящихся к структурам этого типа"[6].Видимо, с такой точки зрения структуры равновесные и неравновесные представляются неразличимыми. Однако очевидно, что при идентичном описании различных по природе явлений фундаментальные существенные черты этих явлений остаются неучтенными. 

Сделанным замечанием мы завершаем обсуждение проблемы взаимосвязи системы и внешней среды в синергетике и переходим к рассмотрению целостной природы явлений пространственно--временной самоорганизации.

СИНЕРГЕТИКА И ПРИНЦИП ЦЕЛОСТНОСТИ

Обсудим вопрос о природе пространственно--временной самоорганизации и способах ее описания в свете первого принципа системного мышления --- принципа целостности [5; 28]. 

"Целостность объекта как системы означает принципиальную несводимость его свойств к сумме свойств составляющих его элементов и не выводимость из последних свойств целого" [28]. Таким образом, использование принципа целостности предполагает наличие выделенных элементов (частей) объекта как системы. 

"Давняя историко--философская традиция свидетельствует о том, что допустимо два полярных способа разбиения целостной системы на части: при одном из них получаемые в итоге элементы, или части, не несут на себе, так сказать, целостных свойств исходной системы, при другом --- действительно выделяются части целостной системы, т.е. такие элементарные образования, которые сохраняют в специфической форме свойства исследуемой системы. Будем условно называть второй способ декомпозиции системы "целостным" разбиением ее на части" [28]. 

Явления пространственно--временной самоорганизации, с нашей точки зрения, имеют целостную природу. Поэтому их изучение требует целостного подхода, как в части исходных содержательных представлений, так и формальных методов описания. Используемые сегодня  для этой цели предметные представления и методы соответствуют нецелостному способу разбиения системы: элементы объектов как систем в рамках этих предметных представлений не являются элементами целого. Ставя задачу определения указанной природы пространственно--временной самоорганизации, мы не можем их использовать и снова сталкиваемся с парадоксом классической «системной" структуры, на этот раз --- парадоксом целостности [28]: "Решение задачи описания данной системы как некоторой целостности возможно лишь при наличии решения задачи "целостного» разбиения данной системы на части, а решение задачи "целостного» разбиения данной системы на части, возможно, лишь при наличии решения задачи описания данной системы как некоторой целостности". Чтобы обойти этот парадокс, воспользуемся понятием части пространства. Как указывается ниже, способность теоретического субъекта к пространственному соотнесению объектов может служить целостнообразующим фактором. Мы воспользуемся также категорией процесса. Как указывается в [33; 40], объект задается процессом; для получения целостности необходимо задать объект как определенный процесс. Отметим, что процесс, будучи понятием динамическим, имеющим временную природу, для своего целостного описания требует выделения специфических целостных элементов процесса [34] --- "процесс изменения как предм. теор. иссл." Теперь можно сформулировать определение: пространственно--временная самоорганизация является целостной в том смысле, что в ней проявляется согласованное с потоками обмена с внешней средой взаимодействие элементов процессов, протекающих в различных частях системы. 

Перейдем к рассмотрению существующей трактовки целостности пространственно--временной самоорганизации на предметном уровне описания. Предметные представления физики, химии, биофизики, экологии и т.п., синтезируемые синергетикой, имеют в качестве общей основны  представление о системе взаимодействующих элементов. Роль элемента может играть атом, молекула, клетка, живой организм и т.п. В взаимодействие элементов может заключаться, например, в упругом столкновении молекул, приводящем к изменению их скоростей, актехимической реакции, в ходе которого одни молекулы превращаются в другие, передвижении живых клеток по градиенту вещества, которое сами эти клетки выделяют и т.д. В дальнейшем для определенности мы будем говорить о химическом взаимодействии. 

При протекании явлений пространственно--временной самоорганизации элементы начинают взаимодействовать согласованно в пространстве--времени, т.е. наблюдается эффект кооперации. Например, пространственно однородные автоколебания цвета реакционной смеси входе реакции Белоусова---Жаботинского означают, что в каждой точке реакционной смеси количество актов химического взаимодействия периодически меняется во времени и эти изменения пространственно согласованы, синхронизированы. Над элементную природу пространственно--временной самоорганизации отмечает И.Пригожин:"...во всех этих случаях общим является макроскопическое, надмолекулярное... проявление цепи событий, зарождающихся на уровне отдельных молекул" [21]. 

Как указывают Б.Б.Кадомцев и Ю.А.Данилов, предложенный Г.Хакеном термин "синергетика", происходящий от греческого synergia--- содействие, сотрудничество, акцентирует внимание на согласованности взаимодействия частей при образовании структуры как единого целого [8]. Сам Г.Хакен дает такое определение: "Синергетика занимается изучением систем, состоящих из многих подсистем различной природы... мы хотим рассмотреть, каким образом взаимодействие таких подсистем приводит к возникновению пространственных, временных или пространственно--временных структур в макроскопических масштабах" [38]. Момент целостности применительно к синергетике фиксируют С.П.Курдюмов и Г.Г.Малинецкий: "Синергетика, как правило, имеет дело с процессами, где целое обладает свойствами, которых нет ни у одной из частей" [16]. Использованное выше понятие макроскопического является родственным понятию целостности в том смысле, что в контексте цитат оно фиксирует наличие у ансамбля частиц (атомов, молекул) свойств, отсутствующих у отдельной частицы и требующих адекватного этим агрегированным свойствам изменения способа описания системы. Если в философии проблема целостности восходит еще к Платону и Аристотелю [4], то в естественных наука хона до последнего времени была поставлена и предметно осознана, лишь в биологии в связи с осознанием границ редакционистского подхода. Что касается физики, химии и смежных наук, а также математики с ее теоретико-множественным основанием, то здесь до недавнего времени понятие целостности практически не использовалось. Приведенные цитаты показывают, что в рамках синергетики происходит осмысление специалистами естественных наук целостного характера исследуемых ими явлений. Отметим, что такое же осмысление происходит, в частности, ив квантовой механике в связи с проблемой не силового взаимодействия тождественных частиц [39]. 

Обсудим более подробно понятия микро -- и макроописания и переход между ними, на основе которого, прежде всего, реализуется в рамках предметных представлений интенция целостности. Г.Хакен предлагает классификацию уровней описания системы, содержащую три уровня: микроскопический, мезоскопический и макроскопический [38].На микроскопическом уровне рассматривается динамика отдельных элементов --- атомов, молекул и т.п., описываемая с помощью величин, характеризующих эти элементы, например, положений и скоростей атомов. На мезоскопическом уровне рассматриваются ансамблиэлементов, вводятся усредненные величины, характеризующие этиансамбли, например, концентрация, плотность, температура и т.д.,неприменимые на микроскопическом описании. Наконец, намакроскопическом уровне рассматриваются пространственно --временныеструктуры, образуемые ансамблями. Макроскопическому уровню соответствует введение зависимости переменных мезоскопического уровня от положения в пространстве и от времени. Макроструктуры можно характеризовать такими величинами как, например, длина волны, период, амплитуда. По Хакену, специфичным для синергетики является описание динамики макроуровней [38]. 

Как соотносятся между собой микро -- и макроуровень в плане проблем синергетики? Микроуровню соответствует дискретное представление системы. На макроуровне атомы, молекулы и т.д. выступают в качестве элементов, динамика которых и определяет изменения, происходящие с системой.     И.Пригожин указывает, однако, что "описание на микроскопическом уровне становится неадекватным, коль скоро рассматриваемые явления характеризуются достаточно большим масштабом", "...при макроскопическом описании возникают новые качественные аспекты"[21]. 

Г.Хакен отмечает существование разрыва микро -- и макроуровней описания систем, обсуждая модельную задачу о движении большого числа точечных масс, соединенных пружинами. При описании системы на микроуровне ее движение будет описываться наборами чисел, задающих положение каждой из точечных масс во времени. Однако только на макроуровне возникают такие характеристики пространственной структуры, как длина волны и амплитуда, отсутствующие на уровне точечных масс [37], т.е. "на макроскопическом уровне требуются совершенно иные концепции, нежели на микроскопическом". Переходу на макроуровень описания соответствует переход к концепции непрерывной среды [19]. Важно отметить, что в рамках представления о непрерывной среде атом, молекула и т.д. вообще перестают фигурировать как объектописания и, следовательно, не могут и в традиционном нецелостном смысле являться элементами пространственно--временных структур, рассматриваемых на макроуровне. 

По Хакену, переход от микроуровня описания к описанию в макроскопических переменных уже есть шаг в направлении целостного описания системы. На макроуровне методом редукции выделяются макроскопические переменные, определяющие динамику системы в областях неустойчивости, возникновения пространственно--временных структур или смены их типа --- параметры порядка. Понятие параметра порядка соответствует обмему принципу подчинения одних макропеременных другим --- одному из основных принципов самоорганизации [38]. 

Ю.Л.Климонтович отмечает, что процедуры усреднения, определяющие переход от микроописания к описанию в макропеременных, являются предметом статистической теории неравновесных процессов, тем самым выступающей в качестве фундамента синергетики [14]. 

Итак, в рамках предметного описания фиксируется, с одной стороны, целостная природа пространственно--временной самоорганизации, с другой --- неадекватность этой природе элементарных представлений микроуровня. В качестве способа разрешения этого несоответствия рассматривается переход на макроуровень описания. 

Перечислим некоторые соответствующие макроуровню и специфичные для синергетики как интегрирующей области исследований понятия. Помимо параметра порядка, принципа подчинения, а также диссипативных структур [41], автоволн [1], неравновесных фазовых переходов, описываемых обобщенным уравнением Гинзбурга---Ландау [37], выделим интегрирующее понятие синергетики --- понятие активной кинетической среды. "Характерными признаками активных кинетических сред являются следующие: а) существует распределенный источник энергии или веществ, богатых энергией; б) каждый элементарный объем среды находится в состоянии, далеком от термодинамического равновесия, то есть является открытой термодинамической системой, в которой диссипирует часть энергии, поступающей из распределенного источника; в) связь между соседними элементарными объемами осуществляется за счет процессов переноса" [7].     Широкий класс Автоволновые процессов в рамках представления об активной кинетической среде описывается системой уравнений в частных производных параболического. В этой системе все волновые процессы порождаются динамикой точечной нелинейной системы. В.И.Кринский, А.М.Жаботинский полагают, что "это новый тип динамических процессов, порождающих макроскопический линейный масштаб за счет локальных взаимодействий, каждое из которых линейным масштабом не обладает" [1]. Системе [1] соответствует большинство задач, рассмотренных в рамках синергетики. Она является основной формой математического описания явлений пространственно--временной самоорганизации на макроуровне. 

Перейдем к критическому анализу изложенных предметных представлений о системе взаимодействующих элементов, макроуровне описания, предметному представлению процесса с точки зрения принципа целостности.

ПРЕДМЕТНЫЙ УРОВЕНЬ ОПИСАНИЯ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ  САМООРГАНИЗАЦИИ И ПРИНЦИП ЦЕЛОСТНОСТИ

Рассмотрим сначала один общий момент, связанный с использованием принципа целостности. Зададимся вопросом, что значит утверждение "некоторый теоретический объект является элементом целого?" В общем случае теоретический объект, являющийся элементом целого (целостности), может обладать тремя группами признаков (свойств). В--первых, это собственно целостные признаки, указывающие на принадлежность элемента данному целостному единству, сохраняющие, как было указано выше, "в специфической форме целостные свойства исследуемой системы". Во--вторых, это соотносительные признаки, определяющие взаимозависимость выделенных элементов целого[32---34]. Необходимость наличия соотносительных признаков определяется тем, что без них целостность предстанет в виде многообразия отдельных, независимых друг от друга, самостоятельно существующих объектов, что неадекватно представлению о единстве. Признаки обеих групп проявляются вследствие членения данного единства, являются результатом этого членения. В силу этих признаков элементы целого не могут быть даны вне целого и независимо от способа членения. Третью группу образуют признаки, которыми обладает теоретический объект вне связи с тем, что он является элементом целого. Это независимые признаки (или» положительные определенности") [32---34].  Сделав замечание общего характера, рассмотрим понятие системы взаимодействующих элементов. Абстрагируемая сначала от признаков элементов, определяющих их взаимодействие. Тогда мы будем иметь ансамбль невзаимодействующих элементов, ничем, вообще говоря, не отличающийся от математического множества элементов. 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.