рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Технологическое прогнозирование

1) период времени, предшествующий открытию (фаза открытия);

2) период времени между открытием и технологической приме­нимостью или изобретением (фаза творчества);

3) период времени между изобретением или наличием соответ­ствующей технологической конфигурации и началом разработок в широких масштабах (фаза воплощения);

4) время разработки (фаза разработки);

з) циклы главных технологических нововведений в конкрет­ной области;

6) циклы принятия потребителем (деловые циклы). Циклы, приведенные под номерами 5 и 6, разумеется, тесно связаны друг с другом, хотя и не идентичны. Циклы принятия потребителем становятся фактором, «направляющим» разработки в таких технологических областях, для которых характерно широ­кое применение нормативного мышления, например авиакосмиче­ская промышленность и производство ЭВМ.

Фазы 1—4 не обязательно следуют друг за другом непосред­ственно. Каждая фаза зависит от определенного сочетания реаль­ных возможностей, для чего иногда приходится ждать завершения ризвития в других областях. Существует много открытий, которые еще нс привели ни к изобретению, ни к разработкам. Одной из главных задач технологического прогнозирования и является установление соответствующего распределения фаз во времени.

 

 

1.4.2. Прогнозирование в области рационального знания

«Der Негг Gott ist raffiniert, aber boshaft ist Er nicht» («Господь бог изощрен, но он не злонамерен») — то обстоятельство, что это изречение Эйнштейна истинно, имеет важнейшее значение при проведении фундаментальных исследований. Это означает, как весьма аргументированно подчеркнул Винер , что уровень фундаментальных исследований находится в выгодном положении благодаря одному условию, которого нет ни на одном другом уровне, пересекаемом в процессе перемещения технологии: окру­жающая среда фундаментальной науки и технологии не «реаги­рует» на исследования, проводимые человеком; можно стремиться к какой-либо цели, выбирая стратегию, в которой можно не учи­тывать контрстратегию природы. Здесь и только здесь фактор времени не заложен в природе явлений, а вводится самим челове­ком. Прогнозирование сводится к распознаванию неизменных схем, образуемых целями, критериями и связями, а также к оцен­ке способности человека достичь их и того темпа, в котором это можно осуществить.

Несмотря на подобное положение дел, благоприятствующее включению фундаментального уровня в технологическое прогно­зирование, этой области до сих пор уделялось гораздо меньше внимания, чем она заслуживает. Нет сомнения, что «пуристская» позиция ученых сыграла роль шлагбаума, препятствующего вторжению на их территорию.

^^Прогнозирование на фундаментальных уровнях чрезвычайно : важно и с другой точки зрения: любая ошибка, совершенная на (этих уровнях, приводит к значительным и дорогостоящим неуда­чам. Осознание этого обстоятельства побудило ВМФ США прово­дить политику усиления технологического прогнозирования на фундаментальных уровнях. «Научные перспективы» и «технологи­ческие возможности»— вот два различных типа данных, которые вводятся в систему прогнозирования ВМФ США и затем объеди­няются на более поздней стадии.

Оказалось, что отсутствие нормативного мышления делает фундаментальные исследования совершенно непригодными для использования в американских оборонных разработках.

Ядерная энергия представляет наиболее разительный пример поэтапного приобретения фундаментальных знаний, последствия которого были осознаны большинством ученых, связанных с дан­ной работой, пока не вступил в действие ярко выраженный норма­тивный фактор. Основные предпосылки для осуществления цепной реакции деления ядра можно следующим образом сопоставить с сопутствовавшими их достижению прогнозами.

Можно считать, что в этом параллельном развитии прогнозов и достижений три фактора вызвали отсутствие четкого прогноза до того, как был осуществлен третий этап.

1. Структура обеспеченного научного знания не подвергалась систематической оценке. Выполненный заблаговременно правиль­ный расчет кривой дефекта масс игнорировался в большинстве прогнозов, которые обычно указывали выход энергии порядка 0,01 массового эквивалента (характерный для ядерного синтеза) вместо 0,001, имеющего место при делении, и ориентировались на деление легких элементов (водород, литий и пр.),— даже Сци-лард в 1935 г. совершил эту ошибку. Потенциальная роль нейтро­на в цепной реакции, которая первоначально была понята, также вскоре была забыта.

2. Резко отрицательная позиция, занятая Резерфордом, «папой римским» ядерной физики, в отношении возможности использова­ния цепной реакции, повлияла на многих ученых; Резерфорд, по-видимому, был поглощен мыслью о внешнем источнике нейтро­нов. которого (как и сейчас) не имелось для экономически выгод­ных применений, но это и «подавило» идею использования цепной реакции.

3. Отсутствие нормативного мышления проявилось в том, что внимание не было сконцентрировано на исследованиях, подводя­щих к третьему этапу, осуществимость которого была доказана. Ферми, например, который высказал несколько мыслей, носивших характер исследовательских прогнозов, ни разу не пошел дальше предсказания ряда второстепенных применений превращения эле­ментов — производства радиоактивных индикаторов для медицин-C'KIIX целей и т. пЛ И только после того, как было продемонстриро­вано деление атомного ядра, стало стремительно развиваться нор­мативное прогнозирование, которое в свою очередь почти сразу же «дало толчок» решающим экспериментам, имевшим целью доказать осуществимость четвертого этапа. После этого нормативное про­гнозирование приобрело достаточный вес, чтобы послужить основа­нием для научно-исследовательских работ огромного масштаба, проводившихся в течение трех лет, пока вероятностный прогноз не превратился в предсказание.

 

 

НЕДОСТАТКИ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГНОЗИРОВАНИЯ

 

Прогнозирование—рискованное занятие для любого человека, взявшего на себя роль пророка. Его подсте­регают такие опасности, как неопределенность и ненаде/кность имеющихся данных, сложность озанмоден-ствия прогнозов с «реальным миром», его собственная человеческая склонность принимать желаемое за дейст­вительное, эмоциональный характер людского мыш­ления, а также склонность подгонять поддающиеся раз­личному истолкованию «факты» под заранее составлен­ную) схему. Вытекающие отсюда недостатки присущи всем формам прогнозирования. Кроме того, ряд опасно-стен, с которыми должен считаться прогнозист, связан с особым характером процесса появления изобретении II нововведении (и, возможно, особыми качествами са­мих людей, которые специализируются на прогнозиро­вании в этон области). Некоторые из этих недостатков заслуживают более четких определений и кратких пояс­нении.

1. Отсутствие необходимого воображения  и (или) дерзания. От этого недостатка очень страдает работа комиссии, составленных из выдающихся экспертов, многие из которых инстинктивно предпочитают излиш­нюю осторожность (особенно по отношению друг к дру­гу), даже если они осознают опасность такого подхода и стараются быть предельно объективными. В качестве иллюстрации может служить один пример. В 1940 г. Национальная академия наук США создала специаль­ную комиссию для оценки перспективности газовой тур­бины. Членами этого комитета были Т. фон Карман, Ч. Кеттерниг. Р. Мнлликен. М. Мейсон, А. Кристи и Л. Маркс. Их тщательно продуманный и взвешенный вывод, основанный на целом ряде консервативных до-пущеннн. гласил, что газовые турбины будут иметь удельный вес порядка 6—7 кг/л. с. против 0,5 кг/л. с. для весьма распространенных в то время двигателей внут­реннего сгорания.

Если бы члены этой комиссии при выборе предполо­жений исходили из оптимистических, а не пессимистиче­ских оценок, то они получили бы истинную цифру 0,2 кг/л. с. (подтвердилось). Фактически всего лишь год спустя в Англии уже появилась первая газовая турбина.

2. Чрезмерная восторженность. В истории известно немало случаев, когда пророки или изобретатели остава­лись непризнанными современниками и соотечественниками; слава приходила к ним потом, причем обычно из других стран. Достаточно упомянуть в этой связи Шар­ля де Голля, одного из первых пропагандистов тактики «молниеносной» войны; Фрэнка Уиттла—изобретателя турбореактивного двигателя; Циолковского, Оберта и Годдарда—провозвестников ракетной эры и т.д. В ре­зультате в настоящее время некоторые люди склонны слишком переоценивать подобные факты и утверждать, что в сущности «не важно, сколь фантастичными могут казаться наши ожидания, действительность все равно их превзойдет». Артур Кларк так говорит по этому поводу:

«Все, что теоретически возможно, обязательно осу­ществится на практике, как бы ни были велики техни­ческие трудности,—нужно только очень захотеть. Фра­за: «Эта идея фантастична!»—не может служить доводом против какого-либо замысла. Чуть ли не все достижения науки и техники за последние полвека перво­начально были фантастичны, и у нас нет никакой на­дежды предвосхитить будущее, если мы не примем за исходную посылку то, что они и впредь будут обязатель­но «фантастичными» ,

Кларк заносит в свою таблицу «Основные этапы развития техники в будущем» следующие предположе­ния: к 2050 г. мы добьемся контроля над силой тяжести, а к 2100 г.—бессмертия людей.

Некоторые восторженные и ловкие популяризаторы науки использовали метод экстраполяции «огибающей кривой» для обоснования очень риг-кованных предсказа­ний. И, как справедливо заметил Стайн , темпы роста ряда показателей эффективности явно устремятся к бесконечности еще до 2000 г. . Вот несколько примеров: а) Если использовать огибающую кривую для прог­ноза скоростей транспортных средств (рис. 7.1), то ока­жется, что уже к 1982 г. будет, по-видимому, достигну­та скорость света. Интересно сравнить кривую на рис 7.1 с кривой на рис.7.2

 

 

 

 

 

 

 

 

 

Страницы: 1, 2, 3, 4, 5, 6, 7, 8




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.