рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Влияние эпифиза и его гормонов на функционирование организма

Многочисленными клиническими наблюдениями установлено, что нарушения репродуктивной системы организма, вызванные воздействием неблагоприятных факторов внешней среды на женский организм вне беременности, обусловлены дисфункцией гипоталамо-гипофизарно-гонадных отношений.

Экспериментальные исследования, выполненные в лаборатории, показали, что одной из наиболее ранних и выраженных реакций репродуктивной системы при хроническом влиянии ряда неблагоприятных факторов внешней среды является нарушение суточных ритмов секреции ГнРГ, а также контролирующих его секрецию нейромедиаторов в гипоталамусе. Так, в опытах на самках крыс были показаны суточные изменения содержания ГнРГ в СОКП, а также содержания дофамина (ДА) и серотонина (5-ОТ) в гипоталамических структурах, обеспечивающих синтез и секрецию ГнРГ, – в преоптической области и в срединном возвышении. Хроническое воздействие нейротоксического ксенобиотика толуола приводило к нарушению привычных суточных ритмов содержания ГнРГ, а также нейромедиаторов ДА и 5-ОТ и их метаболитов 3,4-диоксифенилуксусной кислоты и 5-оксииндолилуксусной кислоты.

Показано, что экзогенно вводимый мелатонин может обладать антистрессорным действием, которое обусловливается его способностью синхронизировать нарушенные под влиянием стресса колебательные процессы в организме, а также модулировать функцию стресс-лимитирующих и стресс-реализующих (эндокринных) механизмов.

В связи с этим представлялось целесообразным изучение возможности мелатонина восстанавливать нарушенные под влиянием толуола циркадианные ритмы в ПО и СВ, что явилось предметом настоящего рассмотрения.


1.3 Материалы и методы экспериментов

Эксперименты были выполнены на крысах-самках линии Вистар массой 180-220 г. Животные содержались в виварии с искусственной вентиляцией и контролируемым световым режимом (день 8.00-20.00, ночь 20.00-8.00), получали стандартную пищу и воду.

Эксперимент включал 4 группы по 10 животных в каждой.

Первую контрольную группу составили интактные животные.

Во вторую группу вошли животные, получавшие мелатонин.

В третью – подвергавшиеся воздействию толуола на уровне предельно допустимой концентрации (ПДК), установленной гигиенистами для воздуха рабочей зоны предприятий (50 мг/м3), и получавшие мелатонин (ПДК+мелатонин).

Животные четвертой группы подвергались ингаляции ксенобиотика на уровне порога хронического воздействия (10 ПДК), установленного по общетоксикологическим показателям (500 мг/м3), и также получали мелатонин (10 ПДК+мелатонин).

Раствор мелатонина готовился ex tempora из расчета 10 мкг/мл. Эпифизарный гормон растворяли в 1 мл этанола, затем разводили до требуемой концентрации получаемой животными питьевой водой. Животных допускали к поилкам, содержащим раствор мелатонина, с 18.30 вечера до 8.00 утра. Подачу гормона осуществляли накануне ингаляции толуола 5 дней в неделю. Воздействию паров толуола животные подвергались в специальных затравочных камерах в течение 4-х часов в день 5 дней в неделю на протяжении 2-х месяцев.

Забой животных производили как в утреннее (11-12 часов), так и в вечернее (17-18 часов) время. Из мозга декапитированных крыс выделяли ПО и СВ, замораживали в жидком азоте и хранили при -70оС. После размораживания исследуемые структуры мозга подготавливали к хроматографическому анализу. Количественный анализ биогенных аминов в структурах мозга проводили методом ВЭЖХ с электрохимическим детектированием. Содержание веществ рассчитывали в нанограммах на миллиграмм белка, который определяли по методу Лоури.

Статистическую обработку данных выполняли с использованием t-критерия Стьюдента. В качестве критерия достоверности принимали р<0,05. Для оценки вклада различных факторов (время, толуол, мелатонин) в изменение концентрации исследованных веществ применяли трехфакторный дисперсионный анализ.


1.4 Результаты и обсуждение

Установлено, что содержание ДА, норадреналина (НА) и 5-ОТ в ПО, а также уровень ДА в СВ гипоталамуса подвержены суточным колебаниям, причем во всех отмечаемых случаях утреннее содержание нейромедиатора было выше его вечернего уровня. Ингаляция толуола вызывала сдвиги в содержании нейромедиаторов в ПО и СВ, приводившие к полной или частичной потере обнаруженной в этих областях циркадианной ритмичности. Полученные экспериментальные данные свидетельствуют о нарушении центрального звена регуляции репродукции при действии толуола. Следует отметить, что наиболее значительные сдвиги в содержании биогенных аминов в исследованных областях мозга наблюдались при ингаляции в дозах на уровне ПДК. В основном отмечали повышение вечернего уровня нейромедиаторов (НА, ДА в ПО, ДА в СВ), однако в случае 5-ОТ в ПО и НА в СВ наблюдалось изменение их утреннего содержания по сравнению с контролем. Все эти данные подтверждают результаты исследований, проведенных ранее в лаборатории.

Эффект хронического введения животным мелатонина в отношении изменения уровня биогенных аминов и их суточной ритмики в двух исследованных областях гипоталамуса, вопреки ожиданиям, оказался во многом сходным с влиянием ингаляции толуола. У животных, получавших мелатонин, в ПО происходило нарушение циркадианных ритмов нейромедиаторов за счет значительного повышения их уровней в вечернее время по сравнению с контролем (p<0,001 для НА; p<0,02 для ДА и 5-ОТ). В СВ мелатонин повышал вечернее содержание НА по сравнению с контрольными показателями (p<0,01) и снижал утренний уровень ДА (p<0,02), что приводило к потере суточной ритмичности последнего.

При хронической ингаляции толуола на фоне введения эпифизарного гормона в ПО и СВ наблюдались изменения в уровне нейромедиаторов и соответственные нарушения циркадианных ритмов их содержания, сходные с обнаруженными в группе, получавшей только мелатонин. Вместе с тем, в группе ПДК+мелатонин обнаружено изменение направленности суточного ритма НА в ПО за счет значительного повышения его вечернего уровня по сравнению с утренними значениями в той же группе (p<0,01), что обусловлено совместным действием двух факторов: хронического введения мелатонина и ингаляции толуола. При ингаляции животным толуола в дозах 10 ПДК с одновременным введением мелатонина в ПО отмечено характерное для контроля значительное повышение утреннего содержания ДА по сравнению с его вечерним уровнем (p<0,01). При этом абсолютные значения содержания ДА в этой группе в утренние часы превышали контрольные, а также наблюдаемые при введении одного мелатонина показатели (p<0,05).

Метод трехфакторного дисперсионного анализа выявил повышение под действием мелатонина содержания НА, ДА и 5-ОТ в ПО (p<0,001), а также НА в СВ (p<0,05) и снижение уровня ДА в СВ (p<0,05) в данных, объединенных по времени суток и наличию или отсутствию воздействия толуола.

Обобщая вышеприведенные данные, следует отметить, что в СВ суточные колебания исследуемых нейромедиаторов были не так выражены, как в ПО, что согласуется с ранее полученными результатами. Неожиданным оказался тот факт, что действие мелатонина было сходно с влиянием толуола и проявлялось в нарушении суточных ритмов биогенных аминов в исследуемых структурах мозга, главным образом в ПО. Естественно, что, обладая в данных условиях десинхронизирующим эффектом, гормон не мог восстанавливать циркадианные ритмы, нарушенные под влиянием толуола. Наличие в группе 10 ПДК+мелатонин характерного для контроля повышения утреннего уровня ДА в ПО по сравнению с его вечерним содержанием с трудом можно рассматривать как восстановление нормального суточного ритма этого нейромедиатора. Причиной тому служит несоответствие контрольным показателям абсолютных значений уровня ДА в группе 10 ПДК+мелатонин, а также десинхронизирующее действие, которое оказывал гормон на содержание ДА в ПО.

Полученные результаты расходятся с данными о том, что регулярные инъекции мелатонина в определенное время суток восстанавливают утраченную периодичность колебательных процессов у животных. Однако следует отметить, что в опытах, о которых идет речь, синхронизирующие свойства этого гормона проявлялись только у животных, находившихся в условиях десинхроноза из-за длительного пребывания в темноте, и оценивались, в основном, путем исследования поведенческих реакций, таких как индивидуальная суточная локомоторная активность. Другая причина расхождений может заключаться в том, что, как отмечается в литературе, мелатонин может обладать противоположными эффектами в зависимости от вида животного, продолжительности введения мелатонина и времени суток, когда животные его получали. Следует отметить также, что некоторые литературные сведения соответствуют полученным нами данным. Так, например, в опытах на крысах показано увеличение содержания НА и ДА в гипоталамусе в целом, а также повышение уровня 5-ОТ в ПО и других отдельных гипоталамических зонах после хронического введения животным мелатонина. Отмечено также изменение суточных ритмов содержания ДА и 5-ОТ в медиабазальном гипоталамусе новорожденных крыс под влиянием однократного введения им этого гормона.

Вместе с тем, полученные результаты могут представлять немалый интерес в связи с изучением биохимических процессов, обусловливающих многообразие эффектов мелатонина. Поскольку точные механизмы действия гормона эпифиза на гипоталамо-гипофизарную ось регуляции репродукции и на циркадианную ритмику в СХЯ гипоталамуса остаются невыясненными, можно выдвинуть лишь некоторые предположения, объясняющие полученные нами результаты. Не исключено, что длительное, в течение двух месяцев, введение мелатонина могло само по себе явиться стрессирующим фактором и вызвать различные эндокринные и нейроэндокринные нарушения, следствием которых явилось изменение общего содержания и суточной ритмики нейромедиаторов в различных гипоталамических областях. Появились сведения о том, что введение крысам мелатонина в течение 2-х месяцев приводит к увеличению концентрации в крови гонадотропных гипофизарных гормонов на определенных стадиях эстрального цикла, а также стимулирует секрецию лютеинизирующего и фолликулостимулирующего гормонов в ответ на введение ГнРГ. Отмечено также влияние мелатонина на суточные ритмы секреции лютеинизирующего гормона у овец. Недавно обнаружено повышение синтеза ГнРГ у старых крыс в ответ на введение им эпифизарного гормона. Ранее нами было высказано предположение о том, что усиление синтеза и транспорта ГнРГ в вечернее время может быть обусловлено ослаблением тормозных влияний ДА, 5-ОТ и отчасти НА, которые обычно блокируют выделение этого нейрогормона в кровь. Можно предположить, что повышение общего уровня нейромедиаторов и нарушение их циркадианных ритмов в ПО и СВ могло явиться ответом по механизму обратной связи на изменения содержания и суточных ритмов ГнРГ и контролируемых им гонадотропных гипофизарных гормонов под влиянием мелатонина.

Другой возможной причиной обнаруженных нарушений могло стать воздействие мелатонина на центральный водитель циркадианных ритмов – СХЯ гипоталамуса. Отмечено, что гормон тормозит спонтанную ритмику одиночных нейронов и ингибирует метаболические процессы в изолированных супрахиазматических ядрах крыс. Аппликация гормона непосредственно в область супрахиазматических ядер модифицирует фазу и период локомоторного суточного ритма, и в то же время разрушение ядер предупреждает появление синхронизующего эффекта системно вводимого мелатонина. Предполагается, что эпифиз через продуцируемый им мелатонин оказывает сдерживающее влияние на СХЯ гипоталамуса, замедляя ход несколько «спешащих» биологических часов ритмоводителя. Возможно, обнаруженный нами эффект является следствием чрезмерного угнетения мелатонином суточных ритмов их ведущего водителя. Изменения в работе СХЯ могли вторично отразиться на циркадианных ритмах в областях гипоталамуса, морфофункционально связанных с этими ядрами. Из исследованных нами зон преоптическая область наиболее тесно связана с СХЯ, в ней обнаружены наиболее четкие циркадианные изменения уровня нейромедиаторов и, вместе с тем, ярче всего были выражены нарушения суточных ритмов под действием мелатонина. В СВ, не имеющем столь тесных связей с СХЯ, суточные ритмы были менее выражены, однако мелатонин также оказывал эффект, повышая общий уровень ДА и НА. Можно предположить, что изменения содержания этих нейромедиаторов в СВ отражают действие гормона эпифиза непосредственно на гипоталамические зоны, ответственные за регуляцию репродуктивной функции, в частности ПО, а также на соприкасающуюся с СВ туберальную часть гипофиза.





Глава 2. Задержка полового развития у мальчиков.

2.1 Характеристика ЗПР.

Задержка полового развития (ЗПР) является одной из наиболее распространенных эндокринопатий пубертатного возраста. В соответствии с МКБ-10, задержка полового развития выделена как самостоятельное эндокринное заболевание.

ЗПР (задержка пубертата, или соматосексуального развития) является одной из актуальных проблем эндокринологии, андрологии и сексопатологии.

Задержкой полового развития следует считать состояние, когда появление кардинальных признаков полового созревания отстает от нормативных на 2 года и больше и требует исключения гипогонадизма. Достаточно часто ЗПР расценивают как пограничное состояние между нормальным развитием и гипогонадизмом, что и определяет выжидательную тактику ряда специалистов.

По определению C.Wang, ЗПР у мальчиков – это отсутствие признаков полового созревания после 14 лет (средний возраст начала полового развития плюс 2 стандартных отклонения).

Сексопатологи рассматривают ЗПР как самый частый вид нейрогуморальной дефицитарности. Если эндокринолог наблюдает саму задержку и, чаще всего, еще в препубертатном периоде, то сексопатолог чаще всего констатируют скрытую остаточную дефицитарность пубертатного развития.

По данным разных авторов, частота ЗПР составляет от 2,5 до 9,8%, причем за последние десятилетия отмечается ее увеличение.


2.2 Описание пубертатного периода.

Период пубертатного (полового) созревания является одним из ключевых в постнатальном онтогенезе. В этом периоде появляются вторичные половые признаки, происходит быстрый рост, достигают дефинитивной, т.е. определенной, степени зрелости половые органы, происходят глубокие психологические изменения.

Возраст начала и завершения соматических преобразований, характерных для этого периода, в значительной мере генетически детерминирован. Однако целый ряд факторов оказывают влияние на время появления и темпы пубертатного развития.

Эпохальная акселерация вызвала значительное снижение возраста появления признаков полового созревания. Так, если средний возраст, в котором у мальчиков из хора И.С.Баха (18 век) происходила мутация голоса, составлял 17 лет, то у наших современников этот процесс происходит в 13-14 лет, т.е. на 3-4 года раньше.

W.A.Marshall и J.M.Tanner (1970) выделяют 5 стадий ПР, каждая из которых соответствует стадии лобкового оволосения.

Первым клиническим признаком начала полового созревания является значимое увеличение яичек (в среднем, в 11,5 лет). В возрасте 13-14 лет окружность тестикул увеличивается на 3,5-4,5 см. Увеличение яичек завершается к 17-18 годам. Через 6-12 мес от начала увеличения яичек начинается рост полового члена (ПЧ), в среднем, в 12,5 лет. Одновременно появляется складчатость мошонки, увеличивается ее объем, появляется пигментация ПЧ и мошонки. Продолжительность роста наружных гениталий 3-3,5 года с наиболее интенсивным ростом 13,5-15 лет. К 16 годам рост ПЧ заканчивается. Под действием андрогенов происходит рост предстательной железы. Важным показателем степени развития репродуктивной системы являются поллюции, средний возраст появления которых составляет 14 лет. У подростков, имеющих объем яичек 12 см3 и более, должны быть регулярные поллюции. Созревание наружных половых органов и яичек обычно тесно коррелирует с оволосением лобка, т.к. эти признаки находятся под контролем андрогенов. Оволосение лобка начинается через 1-1,5 года после начального увеличения яичек (в среднем, в 12 лет).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.