рефераты Знание — сила. Библиотека научных работ.
~ Портал библиофилов и любителей литературы ~

Меню
Поиск



бесплатно рефераты Философия

93. Постнеклассическая картина мира. С науч. картиной мира связывают широкую панораму знаний о природе, включающую в себя наиболее важные теории, гипотезы и факты. Науч. картина мира представляет собой не просто сумму или набор отдельных знаний, а результат их взаимосогласования и организации в новую целостность, т.е. систему, с этим связана такая хар-ка научной картины мира, как ее системность. Эволюция современной научной картины мира предполагает движение от класс-й к некл-ой и посткл-ой картине мира. Европейская наука стартовала с принятия кл.науч.картины мира, которая была основана на достижениях Галилея и Ньютона, господствовала на протяжении достаточно продолжительного периода – до конца прошлого столетия. Неклас-кая картина мира, пришедшая на смену клас-кой, родилась под влиянием 1-ой теории термодин-ки, оспаривающих универсал-сть законов в классич. мех-ке. Переход к неклас-кому мышлению был осущ-лен в период революции в естествознании на рубеже 20-21вв. Образ постнеклас-кой картины мира – древовидная ветвящаяся графика – разработан с учетом достижений бельгийской школы И. Пригожина. С самого начала и к любому данному моменту времени будущее остается неопределенным. Развитие может пойти в одном из нескольких направлений, что чаще всего опр-ся каким-нибудь незначительным фактором. В совр. Постнекл-ой картине мира анализ общественных структур предполагает исслед-е отк-х нелин-х с-м, в кот-х вели роль исходных усл-й, входящих в них индивидов, локальных измен-й и случайных факторов. Постнекл-ая наука расширяет поле рефлексии над дея-тью, в рамках кот-ой изучаются объекты. В постнекл-ой методологии очень популярны такие понятия, как бифуркация, флуктуация, хаосомность, диссипация, странные аттракторы, нелинейность.

94.Револ-ия в естеств-и в конце XIX и начале  XX в. и открытия в физики.  В Новое время (17-18) сложилась мех-ская картина мира, утверждаю­щая: вся Вселенная – сов-сть большого числа неизменных и недели­мых ч-ц, перемещающихся в абсол. простр-ве и вр-ни, свя­занных силами тяготения, подчиненных законам классич. мех-ки; природа выступает в роли простой машины, части к-ой жестко детер­минированы; все процессы в ней сведены к механическим. Мех-ская картина мира сыграла во многом полож-ную роль, дав естественнонаучное поним-е многих явлений природы. В XX в. диалектич. идеи проникают в геологию и биологию. Эволюц-ые идеи, нашедшие отражение в биологии, геологии подрывали механическую картину мира. В конце XIX - начале XX в. считалось, что научная картина мира практически построена, и если и предстоит какая-либо работа исслед-­телям, то это уточнение некот-ых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались. В 1896 г. франц. физик А. Беккерель (1852-1908) открыл явле­ние самопроизвольного излучения урановой соли, природа которого не была понята. Англ. физик Э. Резерфорд (1871-1937) экспериментально ус­танавливает, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 г. создает планетарную модель строения атома. В 1924 г. франц. физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только элек­тромагнитного излучения, но и других микроч-ц. Но поистине революци­онный переворот в физической картине мира совершил великий физик-теоретик А. Эйн-н (1879-1955), создавший спец. (1905) и об­щую (1916) теорию отн-сти. В мех-ке Ньютона сущ-ют 2 абсол. вел-ны – простр-во и время. Простр-во неизменно и не связано с материей. Время - абсолютно и никак не связано ни с пространством, ни с материей, Эйнштейн отвергает эти положения, считая, что простр-во и время органически связаны с материей и между собой. На основе достиж-й физики развивается химия, особенно в облас­ти строения в-ва. Характерное для классич. этапа стремление к абсолютизации методов естествознания, выразившееся в попытках применения их в соци­ально-гуманитарном познании, все больше и больше выявляло свою ограниченность и односторонность. Наметилась тенденция формир-я но­вой исследов-ской парадигмы, в основании которой лежит представ-е об особом статусе соц-но-гуманитарн. наук.

96.Револ-ия в естеств-и в конце XIX и начале  XX в. и открытия в биологии. В Новое (17-18 вв) время сложилась мех-ская картина мира, утверждаю­щая: вся Вселенная – сов-ость большого числа неизменных и недели­мых ч-ц, перемещающихся в абсолютн. простр-ве и вр-ни, свя­занных силами тягот-я, подчиненных законам классич. мех-ки; природа выступает в роли простой машины, части к-ой жестко детер­минированы; все процессы в ней сведены к мех-ским. Мех-ская картина мира сыграла во многом положительную роль, дав естественнонаучное понимание многих явлений природы. Таких представл-ий придерживались практически вес выдающиеся мыслители XV в. - Галилей. Ньютон, Лейбниц, Декарт. Для их творч-ва характерно построение целостной картины мироздания. Начиная с создания немецким мыслителем Иммануилом Кантом (1724-1804) работы «Всеобщая естественная история и теория неба» в ес­тествознание проникают диалектические идеи. В XX в. диалектические идеи проникают в геологию и биологию. В области биологии эволюционные идеи высказывал франц. естествоиспытатель Ж.Б.Ламарк (1744-1829) в «Философии зоологии» и Ч.Р.Дарвин (1809-1882), создавший знаменитую работу «Происхождение видов путем естественного отбора, или Сохр-е благоприятствуемых пород в борьбе за жизнь» (1859). В 30-х г. XX в. ботаником М. Я. Шлейденом (1804-1881) и биологом Т. Шванном (1810-1882) была создана клеточ. теория строения растений и живых орг-змов. Эволюционные идеи, нашедшие отражение в биологии, геологии подрывали мех-скую картину мира. Этому способ-ли и исслед-я в обл-ти физики. В обл-ти биологии рус. физиологом растений и микробиологом Д.И.Ивановским (1864-1920) был открыт вирус и положено начало виру­сологии. Получает дальнейшее разв-е генетика, в основе к-ой лежат законы Менделя и хромосомная теория наследст-сти американского биолога Т.Ханта (1866-1945). Амер. биохимик Дж. Уотсон (р. 1928) и англ. биофизик Ф. Крик (р. 1916) в 1953 г. создали модель структуры ДНК, что положило начало молекулярн. генетике.  

95.Револ-ия в естеств-ии в конце XIX и начале  XX в. и открытия в астрономии. В конце XIX - начале XX в. считалось, что научная картина мира практически построена, и если и предстоит какая-либо работа исследова­телям, то это уточнение некоторых деталей. Но вдруг последовал целый ряд открытий, к-ые никак в нее не вписывались. Значит-ные достиж-я были отмечены в области астро­номии. Напомним, что под Вселенной (Метагалактикой) понимается дос­тупная наблюд-ю и исслед-ю часть мира. Здесь сущ-ют боль­шие скопления (100- 200 млрд.) звезд - галактики, в одну из к-ых -Млечный Путь - входит Солнеч. с-ма. Наша Галактика состоит из 150 млрд. звезд (светящихся плазменных шаров), среди к-ых Солнце, галактические туманности, космические лучи, магнитные поля, излуч-я. Солнеч. с-ма находится далеко от ядра Галактики, на ее периферии, на расстоянии около 30 световых лет. Возраст Солнечной системы около 5 млрд. лет. На основании «эффекта Доплера» (австрийс. физик и астро­ном) было устан-но, что Вселенная расшир-ся с очень высокой ск-стью. В 1922 г. мат-к и геофизик А. А. Фридман (1888-1925) нашел реш-е урав-й общей теории относ-сти для замкнутой неста­ционар. расширяющейся Вселенной, ставшее матем-ским фунда­ментом больш-ва соврем. космогонических теорий. Астрономы и астрофизики пришли к выводу, что Вселенная нахо­дится в состоянии непрерывной эволюции. Звезды, которые образуются из газово-пылевой межзвездной среды, в основном из водорода и гелия, под действием сил гравитации различаются по «возрасту». Причем образова­ние новых звезд происходит и сейчас. В 1963 г. открыты квазары - астрономические тела, находящиеся вне пределов Галактики. В 1965 г. американские астрономы А. Пензиас (р. 1933) и Р. Вильсон (р. 1936) обнаружили фоновое радиоизлучение». В 1967 г. были открыты пульсары - космические тела, являющиеся источниками радиоизлучения. Создается наука, нацеленная на изуч-е и освоение космического простр-ва - космонавтика. Ознаменовался этот период разв-я науки созд-ем кибернетики - науки об управл-ии, связи и переработке информации, теории с-м. Интенсивное разв-е промышленного произв-ва, космических исслед-й стимулирует дальнейшее совершен-ние технич. наук.


98. Принцип относительности в классической механике

Принцип относительности Галилея органически вошел в созданную И. Ньютоном классическую механику. Ее основу составляют три "аксиомы" - три знаменитых закона Ньютона. Уже первый из них, гласящий: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние", говорит об относительности движения и одновременно указывает на существование систем отсчета (они были названы инерциальными), в которых тела, не испытывающие внешних воздействий, движутся "по инерции", не ускоряясь и не замедляясь. Именно такие инерциальные системы имеются ввиду и при формулировке двух остальных законов Ньютона. При переходе из одной инерциальной системы в другую меняются многие величины, характеризующие движение тел, например, их скорости или формы траектории движения, но законы движения, то есть соотношения, связывающие эти величины, остаются постоянными. Чтобы описывать механические движения, то есть изменение положения тел в пространстве, Ньютон четко сформулировал представления о пространстве и времени. Пространство мыслилось как некий "фон", на котором развертывается движение материальных точек. Их положение можно определять, например, с помощью декартовых координат x, у, z, зависящих от времени t. Таким образом принимается, что время абсолютно. Эти формулы получили название преобразований Галилея. По Ньютону, пространство выступает как некая координатная сетка, на которую не влияет материя и ее движение. Время в такой "геометрической" картине мира как бы отсчитывается некими абсолютными часами, ход которых ничто не может ни ускорить, ни замедлить.


99, 100. Спец. теория отн-сти. В конце XIX - начале XX в. считалось, что науч. картина мира практически построена, и если и предстоит какая-либо работа исслед-­телям, то это уточн-е нек-ых деталей. Но вдруг последовал целый ряд открытий, которые никак в нее не вписывались. Например, англ. физик Э. Рсзерфорд (1871-1937) эксперим-но ус­танав-ет, что атомы имеют ядро, в к-ом сосредоточена вся их масса В 1924 г. фран. физик Луи де Бройль(1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только элек­тромагнитного излуч-я, но и других микроч-ц. Но поистине революци­онный переворот в физич. картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший спец.(1905) и об­щую (1916) теорию отн-сти. В мех-ке Ньютона сущ-ют 2 абс-ные вел-ны – простр-во и время. Простр-во неизменно и не связано с материей. Время - абсолютно и никак не связано ни с простр-вом, ни с материей, Э. отвергает эти полож-я, считая, что простр-во и время органически связаны с материей и между собой. Тем самым задачей теории отн-сти стан-ся опред-е законов 4-хмерного простр-ва, где 4-ая коорд-та -время. Э., приступая к разраб-ке своей теории, принял в кач-ве исходных два полож-я; ск-сть света в вакууме неизменна и одинакова во всех с-мах, движущихся прямолинейно и равномерно друг отн-но друга, и для всех инерциальных с-м все законы природы одина­ковы, а понятие абс-ной ск-ти теряет знач-е, так как нет воз­мож-сти ее обнаружить. Говоря об открытии спец. теории отн-сти, нельзя не вспомнить нидерландс. физика А. Лоренца {1853-1928), к-ый в 1892 г. вывел урав-е (получившее назв-е «преобраз-я Лоренца»), дающее возмож-сть устан-ть, что при переходе от одной инерциальной с-мы к другой м. изменяться знач-я вр-ни и размеры движущеюся тела в направл-и ск-ти движ-я. А крупнейший франц. мат-к и физик Анри Пуанкаре (1854-1912), к-ый и ввел назв-е «преобраз-е Лоренца», первым начал польз-ться термином «принцип отн-сти», незав-мо от Э-на развил мат-скую ст-ну этого принципа и практически одновр-но с ним показал неразрыв. связь между энергией и массой.


101. Модель эволюции Вселенной

Вселенную в целом изучает космология – наука о космосе. Космология открывает упорядоченность нашего мира и нацелена на поиск законов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого. Выводы космологии называются моделями происхождения и развития Вселенной. Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенной на основе общей теории относительности и релятивистской теории тяготения. В основе этой модели лежат два предположения: 1. свойства Вселенной одинаковы во всех ее точках (одноточность) и направлениях (изотропность); 2. наилучшим известным описанием гравитационного поля являются уравнения Эйнштейна. Из этого следует так называемая кривизна пространства и связь кривизны с плотностью массы. Из теории относительности следует, что искревленной пространство не может быть стационарным: оно должно или расширяться или сжиматься.


102. Красное смещение, его сущность и значение  Красное смещение – это понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу. Согласно обнаруженному эффекту Доплера, при удалении от нас какого-либо источника колебаний, воспринимаемая нами частота колебаний уменьшается, а длина волны соответственно увеличивается. При излучении происходит «покраснение», т.е. линии спектра сдвигаются в сторону более длинных красных волн. Для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени красное смещение оказалось пропорциональным расстоянию до источника. Красное смещение надежно подтверждает теоретический вывод о нестационарности области нашей Вселенной с линейными размерами. Составной частью модели расширяющейся Вселенной является представление о Большом Взрыве, происшедшем 12-18 млрд. леи назад. Рождение Вселенной из «ничего» означает с современной научной точки зрения ее  самопроизвольное возникновение из вакуума, когда в отсутствие частиц происходит случайная флуктуация. Выходит, что до образования Вселенной не было ни пространства, ни времени.

103. Раздувающаяся Вселенная и развитие простр-но-временной структуры мира. На нынешнем этапе разв-я космологич. науки наиболее влиятельной считается модель раздувающейся Вселенной, кот. более детально и физич. описывает эволюцию Вселенной. Начальный вариант модели раздувающейся Вселенной был создан в 1981 г. сотрудниками Массачусетского технологич. инст-та А. Гутом  в кач-ве прилож-я к теории Великого объед-я. В конце 1981 г. советс. физик А. Линде и незав-мо от него амер. ученые А. Альбрехт и П. Стейхардт создали усовершенствованный вариант модели раздувающейся Вселенной. В 1983 г. А. Линде предложил еще один вариант сценария раздувающейся Вселенной, так наз-й сценарий хаотического раздув-я. Согласно этой модели Вселенная возникла 15-20 млрд. лет тому назад из сингул-ого состояния. П.-в. св-ва этого состояния: сильная искривленность, многосвязность, замкнутость, десятимерность. В процессе раздув-я Вселенной она постепенно охлажд-ся и в соотв-вии с этим постеп-но «вымораж-ся» слабые, сильные и электромагнитные взаимодействия. Модель раздувающейся Вселенной, основанная на теории Большого взрыва, справедливо считается наиболее адекватной дейс-ти и она достат-но обоснов-но отражает закономерные этапы разв-я п.-в. с. мегамира. Фил-фский анализ пр-ва и вр-ни развивающегося микро-, макро- и мегамира и их соотнош-я показ-ет, что отлич-ся друг от друга в кол-ном отнош-и, в целом неразрывно взаимосвязаны, уровень реальности имеет относ-ный хар-р, с изменением топологических хар-к  уровней м. изменяться п.-в. с. Эволюция В.есть одноврем-но и эволюция ее п.-в.с.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20




Новости
Мои настройки


   бесплатно рефераты  Наверх  бесплатно рефераты  

© 2009 Все права защищены.